Subscribe to our YouTube channel for the latest videos, updates, and tips.


Equation of a Line Perpendicular to a Line

We will learn how to find the equation of a line perpendicular to a line.

Prove that the equation of a line perpendicular to a given line ax + by + c = 0 is bx - ay + λ = 0, where λ is a constant.

Let m1 be the slope of the given line ax + by + c = 0 and m2 be the slope of a line perpendicular to the given line.

Then,

m1 = -ab and m1m2 = -1

⇒ m2 = -1m1 = ba

Let c2 be the y-intercept of the required line. Then its equation is

y = m2x + c2

⇒ y = ba x + c2

⇒ bx - ay + ac2 = 0

⇒ bx - ay + λ = 0, where  λ = ac2 = constant.

To get it more clear let us assume that ax + by + c = 0 (b ≠ 0) be the equation of the given straight line.

Now convert the ax + by + c = 0 in to slope-intercept form we get,

by = - ax - c     

⇒ y = - ab x - cb

Therefore, the slope of the straight line ax + by + c = 0 is (- ab).

Let m be the slope of a line which is perpendicular to the line ax + by + c = 0. Then, we must have,

m × (- ab) = - 1    

⇒ m = ba 

Therefore, the equation of a line perpendicular to the line ax + by + c = 0 is

y = mx + c    

⇒ y = ba x + c

⇒ ay =  bx +  ac

⇒ bx - ay+ k = 0, where k = ac, is an arbitrary constant.

 

Algorithm for directly writing the equation of a straight line perpendicular to a given straight line:

To write a straight line perpendicular to a given straight line we proceed as follows:

Step I: Interchange the coefficients of x and y in equation ax + by + c = 0.

Step II: Alter the sign between the terms in x and y of equation i.e., If the coefficient of x and y in the given equation are of the same signs make them of opposite signs and if the coefficient of x and y in the given equation are of the opposite signs make them of the same sign.

Step III: Replace the given constant of equation ax + by + c = 0 by an arbitrary constant.

For example, the equation of a line perpendicular to the line 7x + 2y + 5 = 0 is 2x - 7y + c = 0; again, the equation of a line, perpendicular to the line 9x - 3y = 1 is 3x + 9y + k = 0.

 

Note:

Assigning different values to k in bx - ay + k = 0 we shall get different straight lines each of which is perpendicular to the line ax + by + c = 0. Thus we can have a family of straight lines perpendicular to a given straight line.

Solved examples to find the equations of straight lines perpendicular to a given straight line

1. Find the equation of a straight line that passes through the point (-2, 3) and perpendicular to the straight line 2x + 4y + 7 = 0.

Solution:

The equation of a line perpendicular to 2x + 4y + 7 = 0 is

4x - 2y + k = 0 …………………… (i) Where k is an arbitrary constant.

According to the problem equation of the perpendicular line 4x - 2y + k = 0 passes through the point (-2, 3)

Then,

4 ∙ (-2) - 2 ∙ (3) + k = 0

⇒ -8 - 6 + k = 0

⇒ - 14 + k = 0

⇒ k = 14

Now putting the value of k = 14in (i) we get, 4x - 2y + 14 = 0

Therefore the required equation is 4x - 2y + 14 = 0.


2. Find the equation of the straight line which passes through the point of intersection of the straight lines x + y + 9 = 0 and 3x - 2y + 2 = 0 and is perpendicular to the line 4x + 5y + 1 = 0.

Solution:  

The given two equations are x + y + 9 = 0 …………………… (i) and 3x - 2y + 2 = 0 …………………… (ii)

Multiplying equation (i) by 2 and equation (ii) by 1 we get

                                                       2x + 2y + 18 = 0

                                                       3x  - 2y +   2 = 0

Adding the above two equations we get, 5x = - 20

⇒ x = - 4

Putting x = -4 in (i) we get, y = -5

Therefore, the co-ordinates of the point of intersection of the lines (i) and (ii) are (- 4, - 5).

Since the required straight line is perpendicular to the line 4x + 5y + 1 = 0, hence we assume the equation of the required line as

5x - 4y + λ = 0 …………………… (iii)

Where λ is an arbitrary constant.

By problem, the line (iii) passes through the point (- 4, - 5); hence we must have,

⇒ 5 ∙ (- 4) - 4 ∙ (- 5) + λ = 0  

⇒ -20 + 20 + λ = 0  

⇒ λ = 0.

Therefore, the equation of the required straight line is 5x - 4y = 0.

 The Straight Line






11 and 12 Grade Math

From Equation of a Line Perpendicular to a Line to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Expanded form of Decimal Fractions |How to Write a Decimal in Expanded

    May 07, 25 01:48 AM

    Expanded form of Decimal
    Decimal numbers can be expressed in expanded form using the place-value chart. In expanded form of decimal fractions we will learn how to read and write the decimal numbers. Note: When a decimal is mi…

    Read More

  2. Dividing Decimals Word Problems Worksheet | Answers |Decimals Division

    May 07, 25 01:33 AM

    Dividing Decimals Word Problems Worksheet
    In dividing decimals word problems worksheet we will get different types of problems on decimals division word problems, dividing a decimal by a whole number, dividing a decimals and dividing a decima…

    Read More

  3. How to Divide Decimals? | Dividing Decimals by Decimals | Examples

    May 06, 25 01:23 AM

    Dividing a Decimal by a Whole Number
    Dividing Decimals by Decimals I. Dividing a Decimal by a Whole Number: II. Dividing a Decimal by another Decimal: If the dividend and divisor are both decimal numbers, we multiply both the numbers by…

    Read More

  4. Multiplying Decimal by a Whole Number | Step-by-step Explanation|Video

    May 06, 25 12:01 AM

    Multiplying decimal by a whole number is just same like multiply as usual. How to multiply a decimal by a whole number? To multiply a decimal by a whole number follow the below steps

    Read More

  5. Word Problems on Decimals | Decimal Word Problems | Decimal Home Work

    May 05, 25 01:27 AM

    Word problems on decimals are solved here step by step. The product of two numbers is 42.63. If one number is 2.1, find the other. Solution: Product of two numbers = 42.63 One number = 2.1

    Read More