Distance of a Point from a Straight Line

We will learn how to find the perpendicular distance of a point from a straight line.

Prove that the length of the perpendicular from a point (x\(_{1}\), y\(_{1}\)) to a line ax + by + c = 0 is \(\frac{|ax_{1} + by_{1} + c|}{\sqrt{a^{2} + b^{2}}}\)

Let AB be the given straight line whose equation is ax + by + c = 0 ………………… (i) and P (x\(_{1}\), y\(_{1}\)) be the given point.

To find the length of the perpendicular drawn from P upon the line (i).

Firstly, we assume that the line ax + by + c = 0 meets x-axis at y = 0.

Therefore, putting y = 0 in ax + by + c = 0 we get ax + c = 0 ⇒ x = -\(\frac{c}{a}\).

Therefore, the coordinate of the point A where the line ax + by + c = 0 intersect at x-axis are (-\(\frac{c}{a}\), 0).

Similarly, putting x = 0 in ax + by + c = 0 we get by + c = 0 ⇒ y = -\(\frac{c}{b}\).

Therefore, the coordinate of the point B where the line ax + by + c = 0 intersect at y-axis are (0, -\(\frac{c}{b}\)).

From P draw PM perpendicular to AB.

Now find the area of ∆ PAB.

Area of ∆ PAB = ½|\(x_{1}(0 + \frac{c}{b}) - \frac{c}{a}(-\frac{c}{b} - y_{1}) + 0(y_{1} - 0)\)|

= ½|\(\frac{cx_{1}}{b} + \frac{cy_{1}}{b} + \frac{c^{2}}{ab}\)|

= |\((ax_{1} + by_{1} + c)\frac{c}{2 ab}\)| ……………………………….. (i)

Again, area of PAB = ½ × AB × PM = ½ × \(\sqrt{\frac{c^{2}}{a^{2}} + \frac{c^{2}}{b^{2}}}\) × PM = \(\frac{c}{2ab}\sqrt{a^{2} + b^{2}}\) × PM ……………………………….. (ii)

Now from (i) and (ii) we get,

|\((ax_{1} + by_{1} + c)\frac{c}{2 ab}\)| = \(\frac{c}{2ab}\sqrt{a^{2} + b^{2}}\) × PM

⇒ PM = \(\frac{|ax_{1} + by_{1} + c|}{\sqrt{a^{2} + b^{2}}}\)

 

Note: Evidently, the perpendicular distance of P (x\(_{1}\), y\(_{1}\)) from the line ax + by + c = 0 is \(\frac{ax_{1} + by_{1} + c}{\sqrt{a^{2} + b^{2}}}\) when ax\(_{1}\) + by\(_{1}\) + c   is positive; the corresponding distance is \(\frac{ax_{1} + by_{1} + c}{\sqrt{a^{2} + b^{2}}}\) when ax\(_{1}\) + by\(_{1}\) + c is negative.

(ii) The length of the perpendicular from the origin to the straight line ax + by + c = 0 is \(\frac{|c|}{\sqrt{a^{2} + b^{2}}}\).

i.e.,

The perpendicular distance of the line ax + by + c = 0 from the origin \(\frac{c}{\sqrt{a^{2} + b^{2}}}\)  when c > 0 and - \(\frac{c}{\sqrt{a^{2} + b^{2}}}\) when c < 0.

Algorithm to find the length of the perpendicular from a point (x\(_{1}\), y\(_{1}\)) upon a given line ax + by + c = 0.

Step I: Write the equation of the line in the from ax + by + c = 0.

Step II: Substitute the coordinates x\(_{1}\) and y\(_{1}\) of the point in place of x and y respectively in the expression.

Step III: Divide the result obtained in step II by the square root of the sum of the squares of the coefficients of x and y.

Step IV: Take the modulus of the expression obtained in step III.


Solved examples to find the perpendicular distance of a given point from a given straight line:

1. Find the perpendicular distance between the line 4x - y = 5 and the point (2, - 1).

Solution:

The equation of the given straight line is 4x - y = 5     

or, 4x - y - 5 = 0

If Z be the perpendicular distance of the straight line from the point (2, - 1), then

Z = \(\frac{|4\cdot 2 - (-1) - 5|}{\sqrt{4^{2} + (-1)^{2}}}\)

= \(\frac{|8 + 1 - 5|}{\sqrt{16 + 1}}\)

= \(\frac{|4|}{\sqrt{17}}\)

= \(\frac{4}{\sqrt{17}}\)

Therefore, the required perpendicular distance between the line 4x - y = 5 and the point (2, - 1)= \(\frac{4}{\sqrt{17}}\) units.

 

2. Find the perpendicular distance of the straight line 12x - 5y + 9 from the point (2, 1)

Solution:

The required perpendicular distance of the straight line 12x - 5y + 9 from the point (2, 1) is |\(\frac{12\cdot 2 - 5\cdot 1 + 9}{\sqrt{12^{2} + (-5)^{2}}}\)| units.

= \(\frac{|24  - 5 + 9|}{\sqrt{144 + 25}}\) units.

= \(\frac{|28|}{\sqrt{169}}\) units.

= \(\frac{28}{13}\) units.

 

3. Find the perpendicular distance of the straight line 5x - 12y + 7 = 0 from the point (3, 4).

Solution:

The required perpendicular distance of the straight line 5x - 12y + 7= 0 from the point (3, 4) is

If Z be the perpendicular distance of the straight line from the point (3, 4), then

Z = \(\frac{|5\cdot 3 - 12 \cdot 4 + 7|}{\sqrt{5^{2} + (-12)^{2}}}\)

= \(\frac{|15 - 48 + 7|}{\sqrt{25 + 144}}\)

= \(\frac{|-26|}{\sqrt{169}}\)

= \(\frac{26}{13}\)

= 2

Therefore, the required perpendicular distance of the straight line 5x - 12y + 7 = 0 from the point (3, 4) is 2 units.

 The Straight Line




11 and 12 Grade Math

From Distance of a Point from a Straight Line to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Types of Fractions |Proper Fraction |Improper Fraction |Mixed Fraction

    Mar 02, 24 05:31 PM

    Fractions
    The three types of fractions are : Proper fraction, Improper fraction, Mixed fraction, Proper fraction: Fractions whose numerators are less than the denominators are called proper fractions. (Numerato…

    Read More

  2. Subtraction of Fractions having the Same Denominator | Like Fractions

    Mar 02, 24 04:36 PM

    Subtraction of Fractions having the Same Denominator
    To find the difference between like fractions we subtract the smaller numerator from the greater numerator. In subtraction of fractions having the same denominator, we just need to subtract the numera…

    Read More

  3. Addition of Like Fractions | Examples | Worksheet | Answer | Fractions

    Mar 02, 24 03:32 PM

    Adding Like Fractions
    To add two or more like fractions we simplify add their numerators. The denominator remains same. Thus, to add the fractions with the same denominator, we simply add their numerators and write the com…

    Read More

  4. Comparison of Unlike Fractions | Compare Unlike Fractions | Examples

    Mar 01, 24 01:42 PM

    Comparison of Unlike Fractions
    In comparison of unlike fractions, we change the unlike fractions to like fractions and then compare. To compare two fractions with different numerators and different denominators, we multiply by a nu…

    Read More

  5. Equivalent Fractions | Fractions |Reduced to the Lowest Term |Examples

    Feb 29, 24 05:12 PM

    Equivalent Fractions
    The fractions having the same value are called equivalent fractions. Their numerator and denominator can be different but, they represent the same part of a whole. We can see the shade portion with re…

    Read More