Distance of a Point from a Straight Line

We will learn how to find the perpendicular distance of a point from a straight line.

Prove that the length of the perpendicular from a point (x\(_{1}\), y\(_{1}\)) to a line ax + by + c = 0 is \(\frac{|ax_{1} + by_{1} + c|}{\sqrt{a^{2} + b^{2}}}\)

Let AB be the given straight line whose equation is ax + by + c = 0 ………………… (i) and P (x\(_{1}\), y\(_{1}\)) be the given point.

To find the length of the perpendicular drawn from P upon the line (i).

Firstly, we assume that the line ax + by + c = 0 meets x-axis at y = 0.

Therefore, putting y = 0 in ax + by + c = 0 we get ax + c = 0 ⇒ x = -\(\frac{c}{a}\).

Therefore, the coordinate of the point A where the line ax + by + c = 0 intersect at x-axis are (-\(\frac{c}{a}\), 0).

Similarly, putting x = 0 in ax + by + c = 0 we get by + c = 0 ⇒ y = -\(\frac{c}{b}\).

Therefore, the coordinate of the point B where the line ax + by + c = 0 intersect at y-axis are (0, -\(\frac{c}{b}\)).

From P draw PM perpendicular to AB.

Now find the area of ∆ PAB.

Area of ∆ PAB = ½|\(x_{1}(0 + \frac{c}{b}) - \frac{c}{a}(-\frac{c}{b} - y_{1}) + 0(y_{1} - 0)\)|

= ½|\(\frac{cx_{1}}{b} + \frac{cy_{1}}{b} + \frac{c^{2}}{ab}\)|

= |\((ax_{1} + by_{1} + c)\frac{c}{2 ab}\)| ……………………………….. (i)

Again, area of PAB = ½ × AB × PM = ½ × \(\sqrt{\frac{c^{2}}{a^{2}} + \frac{c^{2}}{b^{2}}}\) × PM = \(\frac{c}{2ab}\sqrt{a^{2} + b^{2}}\) × PM ……………………………….. (ii)

Now from (i) and (ii) we get,

|\((ax_{1} + by_{1} + c)\frac{c}{2 ab}\)| = \(\frac{c}{2ab}\sqrt{a^{2} + b^{2}}\) × PM

⇒ PM = \(\frac{|ax_{1} + by_{1} + c|}{\sqrt{a^{2} + b^{2}}}\)

 

Note: Evidently, the perpendicular distance of P (x\(_{1}\), y\(_{1}\)) from the line ax + by + c = 0 is \(\frac{ax_{1} + by_{1} + c}{\sqrt{a^{2} + b^{2}}}\) when ax\(_{1}\) + by\(_{1}\) + c   is positive; the corresponding distance is \(\frac{ax_{1} + by_{1} + c}{\sqrt{a^{2} + b^{2}}}\) when ax\(_{1}\) + by\(_{1}\) + c is negative.

(ii) The length of the perpendicular from the origin to the straight line ax + by + c = 0 is \(\frac{|c|}{\sqrt{a^{2} + b^{2}}}\).

i.e.,

The perpendicular distance of the line ax + by + c = 0 from the origin \(\frac{c}{\sqrt{a^{2} + b^{2}}}\)  when c > 0 and - \(\frac{c}{\sqrt{a^{2} + b^{2}}}\) when c < 0.

Algorithm to find the length of the perpendicular from a point (x\(_{1}\), y\(_{1}\)) upon a given line ax + by + c = 0.

Step I: Write the equation of the line in the from ax + by + c = 0.

Step II: Substitute the coordinates x\(_{1}\) and y\(_{1}\) of the point in place of x and y respectively in the expression.

Step III: Divide the result obtained in step II by the square root of the sum of the squares of the coefficients of x and y.

Step IV: Take the modulus of the expression obtained in step III.


Solved examples to find the perpendicular distance of a given point from a given straight line:

1. Find the perpendicular distance between the line 4x - y = 5 and the point (2, - 1).

Solution:

The equation of the given straight line is 4x - y = 5     

or, 4x - y - 5 = 0

If Z be the perpendicular distance of the straight line from the point (2, - 1), then

Z = \(\frac{|4\cdot 2 - (-1) - 5|}{\sqrt{4^{2} + (-1)^{2}}}\)

= \(\frac{|8 + 1 - 5|}{\sqrt{16 + 1}}\)

= \(\frac{|4|}{\sqrt{17}}\)

= \(\frac{4}{\sqrt{17}}\)

Therefore, the required perpendicular distance between the line 4x - y = 5 and the point (2, - 1)= \(\frac{4}{\sqrt{17}}\) units.

 

2. Find the perpendicular distance of the straight line 12x - 5y + 9 from the point (2, 1)

Solution:

The required perpendicular distance of the straight line 12x - 5y + 9 from the point (2, 1) is |\(\frac{12\cdot 2 - 5\cdot 1 + 9}{\sqrt{12^{2} + (-5)^{2}}}\)| units.

= \(\frac{|24  - 5 + 9|}{\sqrt{144 + 25}}\) units.

= \(\frac{|28|}{\sqrt{169}}\) units.

= \(\frac{28}{13}\) units.

 

3. Find the perpendicular distance of the straight line 5x - 12y + 7 = 0 from the point (3, 4).

Solution:

The required perpendicular distance of the straight line 5x - 12y + 7= 0 from the point (3, 4) is

If Z be the perpendicular distance of the straight line from the point (3, 4), then

Z = \(\frac{|5\cdot 3 - 12 \cdot 4 + 7|}{\sqrt{5^{2} + (-12)^{2}}}\)

= \(\frac{|15 - 48 + 7|}{\sqrt{25 + 144}}\)

= \(\frac{|-26|}{\sqrt{169}}\)

= \(\frac{26}{13}\)

= 2

Therefore, the required perpendicular distance of the straight line 5x - 12y + 7 = 0 from the point (3, 4) is 2 units.

 The Straight Line




11 and 12 Grade Math

From Distance of a Point from a Straight Line to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Place Value | Place, Place Value and Face Value | Grouping the Digits

    Oct 04, 24 09:47 AM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  2. Worksheet on Subtraction | Practice the Questions | Free Answers

    Oct 04, 24 01:28 AM

    In worksheet on subtraction, all grade students can practice the questions on subtracting numbers with more than two digits. This exercise sheet on subtraction can be practiced by the students

    Read More

  3. Subtraction Word Problems - 2-Digit Numbers | Subtraction Problems

    Oct 03, 24 03:22 PM

    Understand the concept on subtraction word problems - 2-digit numbers for the second grade. Read the question carefully to subtract the two-digit numbers to find the differences and follow the

    Read More

  4. Worksheet on Checking Subtraction Using Addition | Free Answers | Math

    Oct 03, 24 02:22 PM

    Checking Subtraction using Addition
    Here we can use addition to check the answer for the subtraction. Subtract ans check your answer. Find the difference and check your answer using addition.

    Read More

  5. Check for Subtraction and Addition | Checking Subtraction | Problems

    Oct 03, 24 01:13 PM

    Checking Subtraction with Addition
    We will learn to check for subtraction and addition answers after solving. Difference of two numbers is correct when the sum of the subtrahend number and the difference is equal to the minuend.

    Read More