Subscribe to our YouTube channel for the latest videos, updates, and tips.


Slope-intercept Form

We will learn how to find the slope-intercept form of a line.

The equation of a straight line with slope m and making an intercept b on y-axis is y = mx + b

Let a line AB intersects the y-axis at Q and makes an angle θ with the positive direction of x-axis in anticlockwise sense and OQ = b.

Now we have to find the equation of the straight line AB.

Let P (x, y) be any point on the line AB. Draw PL perpendicular to x-axis and CM perpendicular on PL.

Clearly, <PQM = θ, Since, QM parallel to x-axis.

Since the co-ordinate of p is (x, y) hence, PL = y

PM = PL - ML = PL - OQ = y - b

Again, QM = OL = x

Now form the right angle ∆ PQM, we get,

tan θ = PM/QM = y - b/x

⇒ tan θ = y - b/x

If tan θ = m then we have,

m = y - b/x 

⇒ y = mx + b, which is the required equation of the line and satisfied by the co-ordinates of all points on the line AB.

 

Solved examples on equation of a line in slope-intercept form:

1. Find the equation of a straight line whose slope = -7 and which intersects the y-axis at a distance of 2 units from the origin.

Solution:

Here m = -7 and b = 2. Therefore, the equation of the straight line is y = mx + b ⇒ y = -7x + 2 ⇒ 7x + y – 2 = 0.


2. Find the slope and y-intercept of the straight-line 4x - 7y + 1 = 0.

Solution:  

The equation of the given straight line is

4x - 7y + 1 = 0

⇒ 7y = 4x + 1                

⇒ y = 4/7x + 1/7

Now, compare the above equation with the equation y = mx + b we get,

                     m = 4/7 and b =1/7. 

Therefore, the slope of the given straight line is 4/7 and its y-intercept = 1/7 units.

Notes:

(i) The equation of a straight line of the form y = mx + b is called its slope-intercept from.

(ii) If m and b are two fixed constants then equation of slope-intercept from y =mx + b represent a fixed line.

(iii) If m is a fixed constant and b is an arbitrary constant then equation of slope-intercept from y =mx + b represent a family of parallel straight lines.

(iv) If b is a fixed constant and m is an arbitrary constant then equation y = mx + b represent a family of straight lines passing through a fixed point.

(v) If m and c both are arbitrary constants the equation y =mx + b represents a variable line.

(vi) A line can cuts off an intercept b from the positive or negative y-axis then b is positive or negative respectively.

(vii) If the line passes through the origin, then 0 = 0m + b ⇒ b = 0. Therefore, the equation of a line passing through the origin is y = mx, where m is the slope of the line.

(viii) If the slope or gradient i.e., m = 0 and y-intercept i.e., b ≠ 0, then equation y = mx + b ⇒ y = 0x + b ⇒ y = b, which represents the equation of a line parallel to x-axis.

So, when m = 0 then the slope-intercept form y = mx + b can be expressed as an equation of a straight line parallel to x-axis.

(ix) When slope and y-intercept is zero (i.e., m = 0 and b = 0) then equation y =mx + b ⇒ y = 0x + 0 ⇒ y = 0, which represents the equation of x-axis.

So, when m = 0 and b = 0 then the slope-intercept form y = mx + b can be expressed as an equation of x-axis.

(x) When the angle of inclination θ = 90°, then slope m = tan 90° = undefined. In this case the line AB will be either parallel to y-axis or will coincide with the y-axis.

So, the slope-intercept form y = mx + b cannot be expressed as an equation of y-axis or the equation of a line parallel to y-axis.

 The Straight Line





11 and 12 Grade Math

From Slope-intercept Form to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Average | Word Problem on Average | Questions on Average

    May 19, 25 02:53 PM

    Worksheet on Average
    In worksheet on average we will solve different types of questions on the concept of average, calculating the average of the given quantities and application of average in different problems.

    Read More

  2. 8 Times Table | Multiplication Table of 8 | Read Eight Times Table

    May 18, 25 04:33 PM

    Printable eight times table
    In 8 times table we will memorize the multiplication table. Printable multiplication table is also available for the homeschoolers. 8 × 0 = 0 8 × 1 = 8 8 × 2 = 16 8 × 3 = 24 8 × 4 = 32 8 × 5 = 40

    Read More

  3. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  4. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  5. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More