We will learn how to find the slope-intercept form of a line.
The equation of a straight line with slope m and making an intercept b on y-axis is y = mx + b
Let a line AB intersects the y-axis at Q and makes an angle θ with the positive direction of x-axis in anticlockwise sense and OQ = b.
Now we have to find the equation of the straight line AB.
Let P (x, y) be any point on the line AB. Draw PL perpendicular to x-axis and CM perpendicular on PL.
Clearly, <PQM = θ, Since, QM parallel to x-axis.
Since the co-ordinate of p is (x, y) hence, PL = y
PM = PL - ML = PL - OQ = y - b
Again, QM = OL = x
Now form the right angle ∆ PQM, we get,
tan θ = PM/QM = y - b/x
⇒ tan θ = y - b/x
If tan θ = m then we have,
m = y - b/x
⇒ y = mx + b, which is the required equation of the line and satisfied by the co-ordinates of all points on the line AB.
Solved examples on equation of a line in slope-intercept form:
1. Find the equation of a straight line whose slope = -7 and which intersects the y-axis at a distance of 2 units from the origin.
Solution:
Here m = -7 and b = 2. Therefore, the equation of the straight line is y = mx + b ⇒ y = -7x + 2 ⇒ 7x + y – 2 = 0.
2. Find the slope and y-intercept of the straight-line 4x - 7y + 1 = 0.
Solution:
The equation of the given straight line is
4x - 7y + 1 = 0
⇒ 7y = 4x + 1
⇒ y = 4/7x + 1/7
Now, compare the above equation with the equation y = mx + b we get,
m = 4/7 and b =1/7.
Therefore, the slope of the given straight line is 4/7 and its y-intercept = 1/7 units.
Notes:
(i) The equation of a straight line of the form y = mx + b is called its slope-intercept from.
(ii) If m and b are two fixed constants then equation of slope-intercept from y =mx + b represent a fixed line.
(iii) If m is a fixed constant and b is an arbitrary constant then equation of slope-intercept from y =mx + b represent a family of parallel straight lines.
(iv) If b is a fixed constant and m is an arbitrary constant then equation y = mx + b represent a family of straight lines passing through a fixed point.
(v) If m and c both are arbitrary constants the equation y =mx + b represents a variable line.
(vi) A line can cuts off an intercept b from the positive or negative y-axis then b is positive or negative respectively.
(vii) If the line passes through the origin, then 0 = 0m + b ⇒ b = 0. Therefore, the equation of a line passing through the origin is y = mx, where m is the slope of the line.
(viii) If the slope or gradient i.e., m = 0 and y-intercept i.e., b ≠ 0, then equation y = mx + b ⇒ y = 0x + b ⇒ y = b, which represents the equation of a line parallel to x-axis.
So, when m = 0 then the slope-intercept form y = mx + b can be expressed as an equation of a straight line parallel to x-axis.
(ix) When slope and y-intercept is zero (i.e., m = 0 and b = 0) then equation y =mx + b ⇒ y = 0x + 0 ⇒ y = 0, which represents the equation of x-axis.
So, when m = 0 and b = 0 then the slope-intercept form y = mx + b can be expressed as an equation of x-axis.
(x) When the angle of inclination θ = 90°, then slope m = tan 90° = undefined. In this case the line AB will be either parallel to y-axis or will coincide with the y-axis.
So, the slope-intercept form y = mx + b cannot be expressed as an equation of y-axis or the equation of a line parallel to y-axis.
● The Straight Line
11 and 12 Grade Math
From Slope-intercept Form to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Dec 10, 24 02:35 PM
Dec 09, 24 10:39 PM
Dec 09, 24 01:08 AM
Dec 08, 24 11:19 PM
Dec 07, 24 03:38 PM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.