Concurrency of Three Lines

We will learn how to find the condition of concurrency of three straight lines.


Definition of Concurrent Lines:

Three or more lines in a plane are said to be concurrent if all of them
pass through the same point.

Concurrent Lines

In the above Fig., since the three lines, m and n pass through the point O, these are called concurrent lines.

Also, the point O is called the point of concurrence.

Three straight lines are said to be concurrent if they passes through a point i.e., they meet at a point. 

Thus, if three lines are concurrent the point of intersection of two lines lies on the third line.

Let the equations of the three concurrent straight lines be

a\(_{1}\) x + b\(_{1}\)y + c\(_{1}\)  = 0   ……………. (i)

a\(_{2}\) x + b\(_{2}\) y + c\(_{2}\) = 0  ……………. (ii) and

a\(_{3}\) x + b\(_{3}\) y + c\(_{3}\) = 0 ……………. (iii)

Clearly, the point of intersection of the lines (i) and (ii) must be satisfies the third equation.

Suppose the equations (i) and (ii) of two intersecting lines intersect at P(x\(_{1}\), y\(_{1}\)). Then (x\(_{1}\), y\(_{1}\)) will satisfy both the equations (i) and (ii).

Therefore, a\(_{1}\)x\(_{1}\) + b\(_{1}\)y\(_{1}\)  + c\(_{1}\) = 0 and

a\(_{2}\)x\(_{1}\) + b\(_{2}\)y\(_{1}\) + c\(_{2}\) = 0               

Solving the above two equations by using the method of cross-multiplication, we get,

\(\frac{x_{1}}{b_{1}c_{2} - b_{2}c_{1}} = \frac{y_{1}}{c_{1}a_{2} - c_{2}a_{1}} = \frac{1}{a_{1}b_{2} - a_{2}b_{1}}\)

Therefore, x\(_{1}\)  = \(\frac{b_{1}c_{2} - b_{2}c_{1}}{a_{1}b_{2} - a_{2}b_{1}}\) and

y\(_{1}\)  = \(\frac{c_{1}a_{2} - c_{2}a_{1}}{a_{1}b_{2} - a_{2}b_{1}}\),  a\(_{1}\)b\(_{2}\) - a\(_{2}\)b\(_{1}\) ≠ 0

Therefore, the required co-ordinates of the point of intersection of the lines (i) and (ii) are

(\(\frac{b_{1}c_{2} - b_{2}c_{1}}{a_{1}b_{2} - a_{2}b_{1}}\), \(\frac{c_{1}a_{2} - c_{2}a_{1}}{a_{1}b_{2} - a_{2}b_{1}}\)), a\(_{1}\)b\(_{2}\) - a\(_{2}\)b\(_{1}\) ≠ 0

Since the straight lines (i), (ii) and (ii) are concurrent, hence (x\(_{1}\), y\(_{1}\)) must satisfy the equation (iii).

Therefore,

a\(_{3}\)x\(_{1}\) + b\(_{3}\)y\(_{1}\) + c\(_{3}\) = 0

⇒ a\(_{3}\)(\(\frac{b_{1}c_{2} - b_{2}c_{1}}{a_{1}b_{2} - a_{2}b_{1}}\)) + b\(_{3}\)(\(\frac{c_{1}a_{2} - c_{2}a_{1}}{a_{1}b_{2} - a_{2}b_{1}}\)) + c\(_{3}\) = 0

 a\(_{3}\)(b\(_{1}\)c\(_{2}\) - b\(_{2}\)c\(_{1}\)) + b\(_{3}\)(c\(_{1}\)a\(_{2}\) - c\(_{2}\)a\(_{1}\)) + c\(_{3}\)(a\(_{1}\)b\(_{2}\) - a\(_{2}\)b\(_{1}\)) = 0

 \[\begin{vmatrix} a_{1} & b_{1} & c_{1}\\ a_{2} & b_{2} & c_{2}\\ a_{3} & b_{3} & c_{3} \end{vmatrix} = 0\]

This is the required condition of concurrence of three straight lines.


Solved example using the condition of concurrency of three given straight lines:

Show that the lines 2x - 3y + 5 = 0, 3x + 4y - 7 = 0 and 9x - 5y + 8 =0 are concurrent.

Solution:

We know that if the equations of three straight lines  a\(_{1}\) x + b\(_{1}\)y + c\(_{1}\)  = 0, a\(_{2}\) x + b\(_{2}\) y + c\(_{2}\) = 0 and a\(_{3}\) x + b\(_{3}\) y + c\(_{3}\) = 0 are concurrent then

\[\begin{vmatrix} a_{1} & b_{1} & c_{1}\\ a_{2} & b_{2} & c_{2}\\ a_{3} & b_{3} & c_{3} \end{vmatrix} = 0\]

The given lines are 2x - 3y + 5 = 0, 3x + 4y - 7 = 0 and 9x - 5y + 8 =0

We have

\[\begin{vmatrix} 2  & -3 & 5\\ 3 & 4 & -7\\ 9  & -5 & 8\end{vmatrix}\]

= 2(32 - 35) - (-3)(24 + 63) + 5(-15 - 36)

= 2(-3) + 3(87) + 5(-51)

= - 6 + 261 -255

= 0

Therefore, the given three straight lines are concurrent.

 The Straight Line





11 and 12 Grade Math 

From Concurrency of Three Lines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Comparison of Three-digit Numbers | Arrange 3-digit Numbers |Questions

    Sep 13, 24 02:48 AM

    What are the rules for the comparison of three-digit numbers? (i) The numbers having less than three digits are always smaller than the numbers having three digits as:

    Read More

  2. Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

    Sep 13, 24 02:23 AM

    3-Digit Numbers Crossword
    Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

    Read More

  3. 2nd Grade Place Value | Definition | Explanation | Examples |Worksheet

    Sep 13, 24 01:20 AM

    2nd Grade Place Value
    The value of a digit in a given number depends on its place or position in the number. This value is called its place value.

    Read More

  4. Comparison of Two-digit Numbers | Arrange 2-digit Numbers | Examples

    Sep 12, 24 03:07 PM

     Compare 39 and 36
    What are the rules for the comparison of two-digit numbers? We know that a two-digit number is always greater than a single digit number. But, when both the numbers are two-digit numbers

    Read More

  5. Worksheet on Two Digit Numbers | Numbers in Words | Two-Digit Numbers

    Sep 12, 24 02:09 AM

    Even and Odd Numbers Worksheet
    In worksheet on 2-digit numbers we will write the number which come before, after and in between, write the numerals, write the number names, place value and face value of 2-digit numbers, numbers in…

    Read More