Concurrency of Three Lines

We will learn how to find the condition of concurrency of three straight lines.


Definition of Concurrent Lines:

Three or more lines in a plane are said to be concurrent if all of them
pass through the same point.

Concurrent Lines

In the above Fig., since the three lines, m and n pass through the point O, these are called concurrent lines.

Also, the point O is called the point of concurrence.

Three straight lines are said to be concurrent if they passes through a point i.e., they meet at a point. 

Thus, if three lines are concurrent the point of intersection of two lines lies on the third line.

Let the equations of the three concurrent straight lines be

a\(_{1}\) x + b\(_{1}\)y + c\(_{1}\)  = 0   ……………. (i)

a\(_{2}\) x + b\(_{2}\) y + c\(_{2}\) = 0  ……………. (ii) and

a\(_{3}\) x + b\(_{3}\) y + c\(_{3}\) = 0 ……………. (iii)

Clearly, the point of intersection of the lines (i) and (ii) must be satisfies the third equation.

Suppose the equations (i) and (ii) of two intersecting lines intersect at P(x\(_{1}\), y\(_{1}\)). Then (x\(_{1}\), y\(_{1}\)) will satisfy both the equations (i) and (ii).

Therefore, a\(_{1}\)x\(_{1}\) + b\(_{1}\)y\(_{1}\)  + c\(_{1}\) = 0 and

a\(_{2}\)x\(_{1}\) + b\(_{2}\)y\(_{1}\) + c\(_{2}\) = 0               

Solving the above two equations by using the method of cross-multiplication, we get,

\(\frac{x_{1}}{b_{1}c_{2} - b_{2}c_{1}} = \frac{y_{1}}{c_{1}a_{2} - c_{2}a_{1}} = \frac{1}{a_{1}b_{2} - a_{2}b_{1}}\)

Therefore, x\(_{1}\)  = \(\frac{b_{1}c_{2} - b_{2}c_{1}}{a_{1}b_{2} - a_{2}b_{1}}\) and

y\(_{1}\)  = \(\frac{c_{1}a_{2} - c_{2}a_{1}}{a_{1}b_{2} - a_{2}b_{1}}\),  a\(_{1}\)b\(_{2}\) - a\(_{2}\)b\(_{1}\) ≠ 0

Therefore, the required co-ordinates of the point of intersection of the lines (i) and (ii) are

(\(\frac{b_{1}c_{2} - b_{2}c_{1}}{a_{1}b_{2} - a_{2}b_{1}}\), \(\frac{c_{1}a_{2} - c_{2}a_{1}}{a_{1}b_{2} - a_{2}b_{1}}\)), a\(_{1}\)b\(_{2}\) - a\(_{2}\)b\(_{1}\) ≠ 0

Since the straight lines (i), (ii) and (ii) are concurrent, hence (x\(_{1}\), y\(_{1}\)) must satisfy the equation (iii).

Therefore,

a\(_{3}\)x\(_{1}\) + b\(_{3}\)y\(_{1}\) + c\(_{3}\) = 0

⇒ a\(_{3}\)(\(\frac{b_{1}c_{2} - b_{2}c_{1}}{a_{1}b_{2} - a_{2}b_{1}}\)) + b\(_{3}\)(\(\frac{c_{1}a_{2} - c_{2}a_{1}}{a_{1}b_{2} - a_{2}b_{1}}\)) + c\(_{3}\) = 0

 a\(_{3}\)(b\(_{1}\)c\(_{2}\) - b\(_{2}\)c\(_{1}\)) + b\(_{3}\)(c\(_{1}\)a\(_{2}\) - c\(_{2}\)a\(_{1}\)) + c\(_{3}\)(a\(_{1}\)b\(_{2}\) - a\(_{2}\)b\(_{1}\)) = 0

 \[\begin{vmatrix} a_{1} & b_{1} & c_{1}\\ a_{2} & b_{2} & c_{2}\\ a_{3} & b_{3} & c_{3} \end{vmatrix} = 0\]

This is the required condition of concurrence of three straight lines.


Solved example using the condition of concurrency of three given straight lines:

Show that the lines 2x - 3y + 5 = 0, 3x + 4y - 7 = 0 and 9x - 5y + 8 =0 are concurrent.

Solution:

We know that if the equations of three straight lines  a\(_{1}\) x + b\(_{1}\)y + c\(_{1}\)  = 0, a\(_{2}\) x + b\(_{2}\) y + c\(_{2}\) = 0 and a\(_{3}\) x + b\(_{3}\) y + c\(_{3}\) = 0 are concurrent then

\[\begin{vmatrix} a_{1} & b_{1} & c_{1}\\ a_{2} & b_{2} & c_{2}\\ a_{3} & b_{3} & c_{3} \end{vmatrix} = 0\]

The given lines are 2x - 3y + 5 = 0, 3x + 4y - 7 = 0 and 9x - 5y + 8 =0

We have

\[\begin{vmatrix} 2  & -3 & 5\\ 3 & 4 & -7\\ 9  & -5 & 8\end{vmatrix}\]

= 2(32 - 35) - (-3)(24 + 63) + 5(-15 - 36)

= 2(-3) + 3(87) + 5(-51)

= - 6 + 261 -255

= 0

Therefore, the given three straight lines are concurrent.

 The Straight Line





11 and 12 Grade Math 

From Concurrency of Three Lines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Subtraction of Decimals | Subtracting Decimals | Decimal Subtraction

    Apr 17, 25 01:54 PM

    We will discuss here about the subtraction of decimals. Decimals are subtracted in the same way as we subtract ordinary numbers. We arrange the digits in columns

    Read More

  2. Addition of Decimals | How to Add Decimals? | Adding Decimals|Addition

    Apr 17, 25 01:17 PM

    We will discuss here about the addition of decimals. Decimals are added in the same way as we add ordinary numbers. We arrange the digits in columns and then add as required. Let us consider some

    Read More

  3. Expanded form of Decimal Fractions |How to Write a Decimal in Expanded

    Apr 17, 25 12:21 PM

    Expanded form of Decimal
    Decimal numbers can be expressed in expanded form using the place-value chart. In expanded form of decimal fractions we will learn how to read and write the decimal numbers. Note: When a decimal is mi…

    Read More

  4. Math Place Value | Place Value | Place Value Chart | Ones and Tens

    Apr 16, 25 03:10 PM

    0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 are one-digit numbers. Numbers from 10 to 99 are two-digit numbers. Let us look at the digit 6 in the number 64. It is in the tens place of the number. 6 tens = 60 So…

    Read More

  5. Place Value and Face Value | Place and Face Value of Larger Number

    Apr 16, 25 02:55 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More