Slope of a Line through Two Given Points

How to find the slope of a line through two given points?

Let (x\(_{1}\), y\(_{1}\)) and (x\(_{2}\), y\(_{2}\)) be two given cartesian co-ordinates of the point A and B respectively referred to rectangular co-ordinate axes XOX' and YOY'.

Again let the straight line AB makes an angle θ with the positive x-axis in the anticlockwise direction. 

Now by definition, the slope of the line AB is tan θ.

Therefore, we have to find the value of m = tan θ.

Draw AE and BD perpendiculars on x-axis and from B draw BC perpendiculars on AE. Then,

AE = y\(_{1}\), BD = y\(_{2}\), OE = x\(_{1}\) and OD = x\(_{2}\)

Therefore, BC = DE = OE - OD = x\(_{1}\) - x\(_{2}\)  

Again, AC = AE - CE = AE - BD = y\(_{1}\) - y\(_{2}\)

<ABC = θ, since, BC parallel to x-axis.

Therefore, from the right angle ∆ABC we get,

tan θ = \(\frac{AC}{BC}\) = \(\frac{y_{1} - y_{2}}{x_{1} - x_{2}}\)

⇒ tan θ = \(\frac{y_{2} - y_{1}}{x_{2} - x_{1}}\)

Therefore, the required slop of the line passing through the points A (x\(_{1}\), y\(_{1}\)) and B (x\(_{2}\), y\(_{2}\)) is

m = tan θ = \(\frac{y_{2} - y_{1}}{x_{2} - x_{1}}\) = \(\frac{\textrm{Difference of ordinates of the given point}}{\textrm {Difference of abscissa of the given point}}\)


Solved example to find the slope of a line passes through two given points:

Find the slope of a straight line which passes through points (-5, 7) and (-4, 8).

Solution:

We know that the slope of a straight line passes through two points (x\(_{1}\), y\(_{1}\)) and (x\(_{2}\), y\(_{2}\)) is given by m = \(\frac{y_{2} - y_{1}}{x_{2} - x_{1}}\). Here the straight line passes through (-5, 7) and (-4, 8). Therefore, the slope of the straight line is given by m = \(\frac{8 - 7}{-4 - (-5) }\) = \(\frac{1}{-4 + 5}\) = \(\frac{1}{1}\) = 1

 

Note:

1. Slop of two parallel lines are equal.

2. Slope of x-axis or slope of a straight line parallel to x-axis is zero, since we know that tan 0° = 0.

3. Slop of y-axis or slope of a straight line parallel to y-axis is undefined, since we know that tan 90° is undefined.

4. We know that co-ordinate of the origin is (0, 0). If O be the origin and M (x, y) be a given point, then the slope of the line OM is \(\frac{y}{x}\).

5. The slop of the line is the change in the value of ordinate of any point on the line for unit change in the value of abscissa.

 The Straight Line





11 and 12 Grade Math

From Slope of a Line through Two Given Points to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Properties of Division | Division of Property Overview|Math Properties

    Jan 22, 25 01:30 AM

    Properties of Division
    The properties of division are discussed here: 1. If we divide a number by 1 the quotient is the number itself. In other words, when any number is divided by 1, we always get the number itself as the…

    Read More

  2. Terms Used in Division | Dividend | Divisor | Quotient | Remainder

    Jan 22, 25 12:54 AM

    Divide 12 Candies
    The terms used in division are dividend, divisor, quotient and remainder. Division is repeated subtraction. For example: 24 ÷ 6 How many times would you subtract 6 from 24 to reach 0?

    Read More

  3. Divide on a Number Line | Various Division Problems | Solved Examples

    Jan 22, 25 12:41 AM

    How to divide on a number line? Learn to divide using number line to find the quotient. Solved examples to show divide on a number line: 1. Solve 14 ÷ 7 Solution: 7 is subtracted repeatedly

    Read More

  4. Divide by Repeated Subtraction | Division as Repeated Subtraction

    Jan 22, 25 12:18 AM

    Divide by Repeated Subtraction
    How to divide by repeated subtraction? We will learn how to find the quotient and remainder by the method of repeated subtraction a division problem may be solved.

    Read More

  5. Division Sharing and Grouping | Facts about Division | Basic Division

    Jan 21, 25 08:06 AM

    Sharing and Grouping
    We will learn division sharing and grouping. Share eight strawberries between four children. Let us distribute strawberries equally to all the four children one by one.

    Read More