Angle between Two Straight Lines

We will learn how to find the angle between two straight lines.

The angle θ between the lines having slope m\(_{1}\) and m\(_{2}\) is given by tan θ = ± \(\frac{m_{2} - m_{1}}{1 + m_{1} m_{2}}\)

Let the equations of the straight lines AB and CD are y = m\(_{1}\) x + c\(_{1}\) and y = m\(_{2}\)  x + c\(_{2}\)  respectively intersect at a point P and make angles θ1 and θ2 respectively with the positive direction of x-axis.

Let ∠APC = θ is angle between the given lines AB and CD.

Clearly, the slope of the line AB and CD are m\(_{1}\)  and m\(_{2}\)  respectively.

Then, m\(_{1}\)  = tan θ\(_{1}\)  and m\(_{2}\)  = tan θ\(_{2}\)

Now, from the above figure we get, θ\(_{2}\)  = θ + θ\(_{1}\)  

⇒ θ = θ\(_{2}\)  - θ\(_{1}\)

Now taking tangent on both sides, we get,

tan θ = tan (θ\(_{2}\)  - θ\(_{1}\))

⇒ tan θ = \(\frac{tan θ_{2} - tan θ_{1}}{1 + tan θ_{1} tan θ_{2}}\), [Using the formula, tan (A + B) = \(\frac{tan A - tan B}{1 + tan A tan B}\)

⇒ tan θ = \(\frac{m_{2} - m_{1}}{1 + m_{1} m_{2}}\), [Since, m\(_{1}\)  = tan θ\(_{1}\)  and m\(_{2}\)  = tan θ\(_{2}\)]

Therefore, θ = tan\(^{-1}\)\(\frac{m_{2} - m_{1}}{1 + m_{1} m_{2}}\)

Again, the angle between the lines AB and CD be ∠APD = π - θ since ∠APC = θ

Therefore, tan ∠APD = tan (π - θ) = - tan θ = - \(\frac{m_{2} - m_{1}}{1 + m_{1} m_{2}}\)

Therefore, the angle θ between the lines AB and CD is given by,

tan θ = ± \(\frac{m_{2} - m_{1}}{1 + m_{1} m_{2}}\)

⇒ θ =  tan\(^{-1}\)(±\(\frac{m_{2} - m_{1}}{1 + m_{1} m_{2}}\)) 


Notes:    

(i) The angle between the lines AB and CD is acute or obtuse according as the value of \(\frac{m_{2} - m_{1}}{1 + m_{1} m_{2}}\) is positive or negative.

(ii) The angle between two intersecting straight lines means the measure of the acute angle between the lines.

(iii) The formula tan θ = ± \(\frac{m_{2} - m_{1}}{1 + m_{1} m_{2}}\) cannot be used to find the angle between the lines AB and CD, if AB or CD is parallel to y-axis. Since the slope of the line parallel to y-axis is indeterminate.

 

Solved examples to find the angle between two given straight lines:

1. If A (-2, 1), B (2, 3) and C (-2, -4) are three points, fine the angle between the straight lines AB and BC.

Solution:

Let the slope of the line AB and BC are m\(_{1}\) and m\(_{2}\) respectively.

Then,

m\(_{1}\) = \(\frac{3 - 1}{2 - (-2)}\) = \(\frac{2}{4}\)= ½ and

m\(_{2}\) = \(\frac{-4 - 3}{-2 - 2}\)= \(\frac{7}{4}\)

Let θ be the angle between AB and BC. Then,

tan θ = |\(\frac{m_{2} - m_{1}}{1 + m_{1} m_{2}}\)| = |\(\frac{\frac{7}{4} - \frac{1}{2}}{1 + \frac{7}{4}\cdot \frac{1}{2}}\)| = |\(\frac{\frac{10}{8}}{\frac{15}{8}}\)|= ±\(\frac{2}{3}\).

⇒ θ = tan\(^{-1}\)(\(\frac{2}{3}\)), which is the required angle.

 

2. Find the acute angle between the lines 7x - 4y = 0 and 3x - 11y + 5 = 0.

Solution:  

First we need to find the slope of both the lines.

7x - 4y = 0     

⇒ y = \(\frac{7}{4}\)x

Therefore, the slope of the line 7x - 4y = 0 is \(\frac{7}{4}\)

Again, 3x - 11y + 5 = 0     

⇒ y = \(\frac{3}{11}\)x + \(\frac{5}{11}\)

Therefore, the slope of the line 3x - 11y + 5 = 0 is = \(\frac{3}{11}\)

Now, let the angle between the given lines 7x - 4y = 0 and 3x - 11y + 5 = 0 is θ

Now,

tan θ = | \(\frac{m_{2} - m_{1}}{1 + m_{1} m_{2}}\)| = ±\(\frac{\frac{7}{4} - \frac{3}{11}}{1 + \frac{7}{4}\cdot \frac{3}{11}}\) = ± 1

Since θ is acute, hence we take, tan θ = 1 = tan 45°

Therefore, θ = 45°

Therefore, the required acute angle between the given lines is 45°.

 The Straight Line




11 and 12 Grade Math 

From Angle between Two Straight Lines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheets on Comparison of Numbers | Find the Greatest Number

    Oct 10, 24 05:15 PM

    Comparison of Two Numbers
    In worksheets on comparison of numbers students can practice the questions for fourth grade to compare numbers. This worksheet contains questions on numbers like to find the greatest number, arranging…

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Oct 10, 24 10:06 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Oct 10, 24 03:19 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  4. Place Value | Place, Place Value and Face Value | Grouping the Digits

    Oct 09, 24 05:16 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  5. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More