Straight Line in Normal Form

We will learn how to find the equation of a straight line in normal form.

The equation of the straight line upon which the length of the perpendicular from the origin is p and this perpendicular makes an angle α with x-axis is x cos α + y sin α = p

If the line length of the perpendicular draw from the origin upon a line and the angle that the perpendicular makes with the positive direction of x-axis be given then to find the equation of the line.

Suppose the line AB intersects the x-axis at A and the y-axis at B. Now from the origin O draw OD perpendicular to AB.

The length of the perpendicular OD from the origin = p and ∠XOD = α, (0 ≤ α ≤ 2π).

Now we have to find the equation of the straight line AB.

Now, from the right-angled ∆ODA we get,

\(\frac{OD}{OA}\) = cos α        

\(\frac{p}{OA}\) = cos α          

OA = \(\frac{p}{cos α}\)

Again, from the right-angled ∆ODB we get,

∠OBD = \(\frac{π}{2}\) - ∠BOD = ∠DOX = α    

Therefore, \(\frac{OD}{OB}\) = sin α

or, \(\frac{p}{OB}\) = sin α     

or, OB = \(\frac{p}{sin α}\)

Since the intercepts of the line AB on x-axis and y-axis are OA and OB respectively, hence the required

\(\frac{x}{OA}\) + \(\frac{y}{OB}\) = 1        

\(\frac{x}{\frac{p}{cos α}}\) + \(\frac{y}{\frac{p}{sin α}}\) = 1

\(\frac{x cos α}{p}\) + \(\frac{y sin α}{p}\) = 1           

x cos α + y sin α = p, which is the required form.


Solved examples to find the equation of a straight line in normal form:

Find the equation of the straight line which is at a of distance 7 units from the origin and the perpendicular from the origin to the line makes an angle 45° with the positive direction of x-axis.

Solution:

We know that the equation of the straight line upon which the length of the perpendicular from the origin is p and this perpendicular makes an angle α with x-axis is x cos α + y sin α = p.

Here p = 7 and α = 45°

Therefore, the equation of the straight line in normal form is

x cos 45° + y sin 45° = 7

⇒ x ∙ \(\frac{1}{√2}\) + y ∙ \(\frac{1}{√2}\) = 7

⇒ \(\frac{x}{√2}\) + \(\frac{y}{√2}\) = 7

⇒ x + y = 7√2, which is the required equation.

 

Note:    

(i) The equation of a, straight line in the form of x cos α + y sin α = p is called its normal form.

(ii) In equation x cos α + y sin α = p, the value of p is always positive and 0 ≤ α≤ 360°.

 The Straight Line





11 and 12 Grade Math

From Equation of a Straight Line in Normal Form to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  2. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  3. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More

  4. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 10:31 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  5. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More