Condition of Perpendicularity of Two Lines

We will learn how to find the condition of perpendicularity of two lines.

If two lines AB and CD of slopes m\(_{1}\) and m\(_{2}\) are perpendicular, then the angle between the lines θ is of 90°.

Therefore, cot θ = 0

⇒ \(\frac{1 + m_{1}m_{2}}{m_{2} - m_{1}}\) = 0

⇒ 1 + m\(_{1}\)m\(_{2}\) = 0

m\(_{1}\)m\(_{2}\) = -1.

Thus when two lines are perpendicular, the product of their slope is -1. If m is the slope of a line, then the slope of a line perpendicular to it is -1/m.

Let us assume that the lines y = m\(_{1}\)x + c\(_{1}\) and y = m\(_{2}\) x + c\(_{2}\) make angles α and β respectively with the positive direction of the x-axis and θ be the angle between them.

Therefore, α = θ + β = 90° + β [Since, θ = 90°]

Now taking tan on both sides we get,

tan α = tan (θ + β)

tan α = - cot  β

tan α = - \(\frac{1}{tan β}\)

or,  m\(_{1}\) =  - \(\frac{1}{m_{1}}\)    

or, m\(_{1}\)m\(_{2}\) = -1

Therefore, the condition of perpendicularity of the lines y = m\(_{1}\)x + c\(_{1}\), and y = m\(_{2}\) x + c\(_{2}\) is m\(_{1}\)m\(_{2}\) = -1.

Conversely, if m\(_{1}\)m\(_{2}\) = - 1 then

tan ∙ tan β = - 1      

\(\frac{sin α sin β}{cos α cos β}\) = -1

sin α sin β = - cos α cos β

cos α cos β + sin α sin β = 0

cos (α - β) = 0        

Therefore, α - β = 90°

Therefore, θ = α - β = 90°

Thus, the straight lines AB and CD are perpendicular to each other.

 

Solved examples to find the condition of perpendicularity of two given straight lines:

1. Let P (6, 4) and Q (2, 12) be the two points. Find the slope of a line perpendicular to PQ.

Solution:

Let m be the slope of PQ.

Then m = \(\frac{12 - 4}{2 - 6}\) = \(\frac{8}{-4}\) = -2

Therefore the slope of the line perpendicular to PQ = - \(\frac{1}{m}\) = ½


2. Without using the Pythagoras theorem, show that P (4, 4), Q (3, 5) and R (-1, -1) are the vertices of a right angled triangle.

Solution:

In ∆ ABC, we have:

m\(_{1}\) = Slope of the side PQ = \(\frac{4 - 5}{4 - 3}\) = -1

m\(_{2}\) = Slope of the side PR = \(\frac{4 - (-1)}{4 - (-1)}\) = 1

Now clearly we see that m\(_{1}\)m\(_{2}\) = 1 × -1 = -1

Therefore, the side PQ perpendicular to PR that is ∠RPQ = 90°.

Therefore, the given points P (4, 4), Q (3, 5) and R (-1, -1) are the vertices of a right angled triangle.


3. Find the ortho-centre of the triangle formed by joining the points P (- 2, -3), Q (6, 1) and R (1, 6).

Solution:       

The slope of the side QR of the ∆PQR is  \(\frac{6 - 1}{1 - 6}\) =  \(\frac{5}{-5}\) = -1∙

Let PS be the perpendicular from P on QR; hence, if the slope of the line PS be m then,

m × (- 1) = - 1        

or, m  = 1.

Therefore, the equation of the straight line PS is

y + 3 = 1 (x + 2)         

 or, x - y = 1     …………………(1)  

Again, the slope of the side RP of the ∆ PQR is \(\frac{6 + 3}{1 + 2}\) = 3∙

Let QT be the perpendicular from Q on RP; hence, if the slope of the line QT be m1 then,

m\(_{1}\) × 3  = -1  

or, m\(_{1}\) =  -\(\frac{1}{3}\)

Therefore, tile equation of the straight line QT is

y – 1 = -\(\frac{1}{3}\)(x - 6)                        

or,  3y – 3 = - x + 6 

Or,  x + 3y = 9 ………………(2)

Now, solving equations (1) and (2) we get, x = 3, y = 2.

Therefore, the co-ordinates of the point of intersection of the lines (1) and (2) are (3, 2).

Therefore, the co-ordinates of the ortho-centre of the ∆PQR = the co-ordinates of the point of intersection of the straight lines PS and QT = (3, 2).

 The Straight Line




11 and 12 Grade Math

From Condition of Perpendicularity of Two Lines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 14, 24 02:12 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 14, 24 12:25 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  3. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  4. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  5. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More