Condition of Perpendicularity of Two Lines

We will learn how to find the condition of perpendicularity of two lines.

If two lines AB and CD of slopes m\(_{1}\) and m\(_{2}\) are perpendicular, then the angle between the lines θ is of 90°.

Therefore, cot θ = 0

⇒ \(\frac{1 + m_{1}m_{2}}{m_{2} - m_{1}}\) = 0

⇒ 1 + m\(_{1}\)m\(_{2}\) = 0

m\(_{1}\)m\(_{2}\) = -1.

Thus when two lines are perpendicular, the product of their slope is -1. If m is the slope of a line, then the slope of a line perpendicular to it is -1/m.

Let us assume that the lines y = m\(_{1}\)x + c\(_{1}\) and y = m\(_{2}\) x + c\(_{2}\) make angles α and β respectively with the positive direction of the x-axis and θ be the angle between them.

Therefore, α = θ + β = 90° + β [Since, θ = 90°]

Now taking tan on both sides we get,

tan α = tan (θ + β)

tan α = - cot  β

tan α = - \(\frac{1}{tan β}\)

or,  m\(_{1}\) =  - \(\frac{1}{m_{1}}\)    

or, m\(_{1}\)m\(_{2}\) = -1

Therefore, the condition of perpendicularity of the lines y = m\(_{1}\)x + c\(_{1}\), and y = m\(_{2}\) x + c\(_{2}\) is m\(_{1}\)m\(_{2}\) = -1.

Conversely, if m\(_{1}\)m\(_{2}\) = - 1 then

tan ∙ tan β = - 1      

\(\frac{sin α sin β}{cos α cos β}\) = -1

sin α sin β = - cos α cos β

cos α cos β + sin α sin β = 0

cos (α - β) = 0        

Therefore, α - β = 90°

Therefore, θ = α - β = 90°

Thus, the straight lines AB and CD are perpendicular to each other.

 

Solved examples to find the condition of perpendicularity of two given straight lines:

1. Let P (6, 4) and Q (2, 12) be the two points. Find the slope of a line perpendicular to PQ.

Solution:

Let m be the slope of PQ.

Then m = \(\frac{12 - 4}{2 - 6}\) = \(\frac{8}{-4}\) = -2

Therefore the slope of the line perpendicular to PQ = - \(\frac{1}{m}\) = ½


2. Without using the Pythagoras theorem, show that P (4, 4), Q (3, 5) and R (-1, -1) are the vertices of a right angled triangle.

Solution:

In ∆ ABC, we have:

m\(_{1}\) = Slope of the side PQ = \(\frac{4 - 5}{4 - 3}\) = -1

m\(_{2}\) = Slope of the side PR = \(\frac{4 - (-1)}{4 - (-1)}\) = 1

Now clearly we see that m\(_{1}\)m\(_{2}\) = 1 × -1 = -1

Therefore, the side PQ perpendicular to PR that is ∠RPQ = 90°.

Therefore, the given points P (4, 4), Q (3, 5) and R (-1, -1) are the vertices of a right angled triangle.


3. Find the ortho-centre of the triangle formed by joining the points P (- 2, -3), Q (6, 1) and R (1, 6).

Solution:       

The slope of the side QR of the ∆PQR is  \(\frac{6 - 1}{1 - 6}\) =  \(\frac{5}{-5}\) = -1∙

Let PS be the perpendicular from P on QR; hence, if the slope of the line PS be m then,

m × (- 1) = - 1        

or, m  = 1.

Therefore, the equation of the straight line PS is

y + 3 = 1 (x + 2)         

 or, x - y = 1     …………………(1)  

Again, the slope of the side RP of the ∆ PQR is \(\frac{6 + 3}{1 + 2}\) = 3∙

Let QT be the perpendicular from Q on RP; hence, if the slope of the line QT be m1 then,

m\(_{1}\) × 3  = -1  

or, m\(_{1}\) =  -\(\frac{1}{3}\)

Therefore, tile equation of the straight line QT is

y – 1 = -\(\frac{1}{3}\)(x - 6)                        

or,  3y – 3 = - x + 6 

Or,  x + 3y = 9 ………………(2)

Now, solving equations (1) and (2) we get, x = 3, y = 2.

Therefore, the co-ordinates of the point of intersection of the lines (1) and (2) are (3, 2).

Therefore, the co-ordinates of the ortho-centre of the ∆PQR = the co-ordinates of the point of intersection of the straight lines PS and QT = (3, 2).

 The Straight Line




11 and 12 Grade Math

From Condition of Perpendicularity of Two Lines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 18, 24 02:58 AM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More

  2. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Apr 18, 24 02:15 AM

    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More

  3. Simple Closed Curves | Types of Closed Curves | Collection of Curves

    Apr 18, 24 01:36 AM

    Closed Curves Examples
    In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

    Read More

  4. Tangrams Math | Traditional Chinese Geometrical Puzzle | Triangles

    Apr 18, 24 12:31 AM

    Tangrams
    Tangram is a traditional Chinese geometrical puzzle with 7 pieces (1 parallelogram, 1 square and 5 triangles) that can be arranged to match any particular design. In the given figure, it consists of o…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Apr 17, 24 01:32 PM

    Duration of Time
    We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton every evening. Yesterday, their game started at 5 : 15 p.m.

    Read More