Condition of Parallelism of Lines

We will learn how to find the condition of parallelism of lines.

If two lines of slopes m\(_{1}\) and m\(_{2}\) are parallel, then the angle θ between them is of 90°.

Therefore, tan θ = tan 0° = 0

⇒ \(\frac{m_{2} - m_{1}}{1 + m_{1} m_{2}}\) = 0, [Using tan θ = ± \(\frac{m_{2} - m_{1}}{1 + m_{1} m_{2}}\)]

⇒ \(m_{2} - m_{1}\) = 0

⇒ m\(_{2}\) = m\(_{1}\)

⇒ m\(_{1}\) = m\(_{2}\)

Thus when two lines are parallel, their slopes are equal.

Let, the equations of the straight lines AB and CD are y = m\(_{1}\)x+ c1 and y = m\(_{2}\)x + c\(_{2}\) respectively.

If the straight lines AB and CD be parallel, then we shall have m\(_{1}\) = m\(_{2}\).

That is the slope of line y = m\(_{1}\) x+ c\(_{1}\)  = the slope of the line y = m\(_{2}\)x + c\(_{2}\)

Conversely, if m\(_{1}\) = m\(_{2}\) then the lines y = m\(_{1}\) x+ c\(_{1}\) and y = m\(_{2}\)x + c\(_{2}\) make the same angle with the positive direction of x-axis and hence, the lines are parallel.

 

Solved examples to find the condition of parallelism of two given straight lines:

1. What is the value of k so that the line through (3, k) and (2, 7) is parallel to the line through (-1, 4) and (0, 6)?

Solution:

Let A(3, k), B(2, 7), C(-1, 4)and D(0, 6) be the given points. Then,

m\(_{1}\) = slope of the line AB = \(\frac{7 - k}{2 - 3}\) = \(\frac{7 - k}{-1}\) = k -7

m\(_{2}\) = slope of the line CD = \(\frac{6 - 4}{0 - (-1)}\) = \(\frac{2}{1}\) = 2

Since, Ab and CD are parallel, therefore = slope of the line AB = slope of the line CD i.e., m\(_{1}\) = m\(_{2}\).

Thus,

k - 7 = 2

Adding 7 on both sides we get,

K - 7 + 7 = 2 + 7

K = 9

Therefore, the value of k = 9.

 

2. A quadrilateral has the vertices at the points (-4, 2), (2, 6), (8, 5) and (9, -7). Show that the mid-points of the sides of this quadrilateral are the vertices of a parallelogram.

Solution:

Let A(-4, 2), B(2, 6), C(8, 5) and D(9, -7) be the vertices of the given quadrilateral. Let P,Q, R and S be the mid-points of AB, BC, CD and DA respectively. Then the coordinates of P, Q, R and S are P(-1, 4), Q (5, 11/2), R(17/2, -1) and S(5/2, -5/2).

In order to prove that PQRS is a parallelogram, it is sufficient to show that PQ is parallel to RS and PQ =RS.

We have, m\(_{1}\) = Slope of the side PQ = \(\frac{\frac{11}{2} - 4}{5 - (-1)}\)= ¼

m\(_{2}\) = Slope of the side RS = \(\frac{\frac{-5}{2} + 1}{\frac{5}{2} - \frac{17}{2}}\) = ¼

Clearly, m\(_{1}\) = m\(_{2}\). This shows that PQ is parallel to RS.

Now, PQ = \(\sqrt{(5 + 1)^{2} + (\frac{11}{2} - 4)^{2}}\) = \(\frac{√153}{2}\)

RS = \(\sqrt{(\frac{5}{2} - \frac{17}{2})^{2} + (-\frac{5}{2} + 1)^{2}}\) = \(\frac{√153}{2}\)

Therefore, PQ = RS

Thus PQ ∥ RS and PQ = RS.

Hence, PQRS is a parallelogram.

 The Straight Line




11 and 12 Grade Math 

From Condition of Parallelism of Lines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 3rd Grade Subtraction Worksheet | 3-Digit Subtraction Worksheets | Ans

    Jan 14, 25 01:20 AM

    Fill in the Missing Numbers Subtraction and Addition
    In 3th Grade Addition Worksheet we will solve how to subtract 3-digit numbers by expansion, subtraction of 3-digit numbers without regrouping, subtraction of 3-digit numbers with regrouping, propertie…

    Read More

  2. Facts about Subtraction | Subtraction of Small Numbers|Solved Examples

    Jan 14, 25 12:29 AM

    The operation to finding the difference between two numbers is called subtraction. Let us know some facts about subtraction which will help us to learn subtraction of large numbers. 1. Subtraction wit…

    Read More

  3. Word Problems on Subtraction |Worksheet on Subtraction Word Problems |

    Jan 14, 25 12:21 AM

    Subtraction Problem
    In word problems on subtraction we need to read the question carefully and understand what we need to find out. We know, in subtraction the larger number from which we subtract the other number (the s…

    Read More

  4. Worksheet on Estimating Sums and Differences | Find the Estimated Sum

    Jan 13, 25 01:34 PM

    Estimate the Difference
    In 4th grade worksheet on estimating sums and differences, all grade students can practice the questions on estimations.This exercise sheet on estimating sums and differences can be practiced

    Read More

  5. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More