Condition of Parallelism of Lines

We will learn how to find the condition of parallelism of lines.

If two lines of slopes m\(_{1}\) and m\(_{2}\) are parallel, then the angle θ between them is of 90°.

Therefore, tan θ = tan 0° = 0

⇒ \(\frac{m_{2} - m_{1}}{1 + m_{1} m_{2}}\) = 0, [Using tan θ = ± \(\frac{m_{2} - m_{1}}{1 + m_{1} m_{2}}\)]

⇒ \(m_{2} - m_{1}\) = 0

⇒ m\(_{2}\) = m\(_{1}\)

⇒ m\(_{1}\) = m\(_{2}\)

Thus when two lines are parallel, their slopes are equal.

Let, the equations of the straight lines AB and CD are y = m\(_{1}\)x+ c1 and y = m\(_{2}\)x + c\(_{2}\) respectively.

If the straight lines AB and CD be parallel, then we shall have m\(_{1}\) = m\(_{2}\).

That is the slope of line y = m\(_{1}\) x+ c\(_{1}\)  = the slope of the line y = m\(_{2}\)x + c\(_{2}\)

Conversely, if m\(_{1}\) = m\(_{2}\) then the lines y = m\(_{1}\) x+ c\(_{1}\) and y = m\(_{2}\)x + c\(_{2}\) make the same angle with the positive direction of x-axis and hence, the lines are parallel.

 

Solved examples to find the condition of parallelism of two given straight lines:

1. What is the value of k so that the line through (3, k) and (2, 7) is parallel to the line through (-1, 4) and (0, 6)?

Solution:

Let A(3, k), B(2, 7), C(-1, 4)and D(0, 6) be the given points. Then,

m\(_{1}\) = slope of the line AB = \(\frac{7 - k}{2 - 3}\) = \(\frac{7 - k}{-1}\) = k -7

m\(_{2}\) = slope of the line CD = \(\frac{6 - 4}{0 - (-1)}\) = \(\frac{2}{1}\) = 2

Since, Ab and CD are parallel, therefore = slope of the line AB = slope of the line CD i.e., m\(_{1}\) = m\(_{2}\).

Thus,

k - 7 = 2

Adding 7 on both sides we get,

K - 7 + 7 = 2 + 7

K = 9

Therefore, the value of k = 9.

 

2. A quadrilateral has the vertices at the points (-4, 2), (2, 6), (8, 5) and (9, -7). Show that the mid-points of the sides of this quadrilateral are the vertices of a parallelogram.

Solution:

Let A(-4, 2), B(2, 6), C(8, 5) and D(9, -7) be the vertices of the given quadrilateral. Let P,Q, R and S be the mid-points of AB, BC, CD and DA respectively. Then the coordinates of P, Q, R and S are P(-1, 4), Q (5, 11/2), R(17/2, -1) and S(5/2, -5/2).

In order to prove that PQRS is a parallelogram, it is sufficient to show that PQ is parallel to RS and PQ =RS.

We have, m\(_{1}\) = Slope of the side PQ = \(\frac{\frac{11}{2} - 4}{5 - (-1)}\)= ¼

m\(_{2}\) = Slope of the side RS = \(\frac{\frac{-5}{2} + 1}{\frac{5}{2} - \frac{17}{2}}\) = ¼

Clearly, m\(_{1}\) = m\(_{2}\). This shows that PQ is parallel to RS.

Now, PQ = \(\sqrt{(5 + 1)^{2} + (\frac{11}{2} - 4)^{2}}\) = \(\frac{√153}{2}\)

RS = \(\sqrt{(\frac{5}{2} - \frac{17}{2})^{2} + (-\frac{5}{2} + 1)^{2}}\) = \(\frac{√153}{2}\)

Therefore, PQ = RS

Thus PQ ∥ RS and PQ = RS.

Hence, PQRS is a parallelogram.

 The Straight Line




11 and 12 Grade Math 

From Condition of Parallelism of Lines to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Addition of Decimals | How to Add Decimals? | Adding Decimals|Addition

    Apr 24, 25 01:45 AM

    Addition of Decimals
    We will discuss here about the addition of decimals. Decimals are added in the same way as we add ordinary numbers. We arrange the digits in columns and then add as required. Let us consider some

    Read More

  2. Addition of Like Fractions | Examples | Videos | Worksheet | Fractions

    Apr 23, 25 09:23 AM

    Adding Like Fractions
    To add two or more like fractions we simplify add their numerators. The denominator remains same. Thus, to add the fractions with the same denominator, we simply add their numerators and write the com…

    Read More

  3. Subtraction | How to Subtract 2-digit, 3-digit, 4-digit Numbers?|Steps

    Apr 23, 25 12:41 AM

    Subtraction Example
    The answer of a subtraction sum is called DIFFERENCE. How to subtract 2-digit numbers? Steps are shown to subtract 2-digit numbers.

    Read More

  4. Subtraction of 4-Digit Numbers | Subtract Numbers with Four Digit

    Apr 23, 25 12:38 AM

    Properties of Subtraction of 4-Digit Numbers
    We will learn about the subtraction of 4-digit numbers (without borrowing and with borrowing). We know when one number is subtracted from another number the result obtained is called the difference.

    Read More

  5. Subtraction with Regrouping | 4-Digit, 5-Digit and 6-Digit Subtraction

    Apr 23, 25 12:34 AM

     Subtraction of 5-Digit Numbers with Regrouping
    We will learn subtraction 4-digit, 5-digit and 6-digit numbers with regrouping. Subtraction of 4-digit numbers can be done in the same way as we do subtraction of smaller numbers. We first arrange the…

    Read More