Equation of a Line Parallel to a Line

We will learn how to find the equation of a line parallel to a line.

Prove that the equation of a line parallel to a given line ax + by + λ = 0, where λ is a constant.

Let, ax + by + c = 0 (b ≠ 0) be the equation of the given straight line.

Now, convert the equation ax + by + c = 0 to its slope-intercept form.

ax + by+ c = 0

⇒ by = - ax - c

Dividing both sides by b, [b ≠ 0] we get,      

y =  -\(\frac{a}{b}\) x - \(\frac{c}{b}\), which is the slope-intercept form.

Now comparing the above equation to slope-intercept form (y = mx + b) we get,

The slope of the line ax + by + c = 0 is (- \(\frac{a}{b}\)).

Since the required line is parallel to the given line, the slope of the required line is also (- \(\frac{a}{b}\)).

Let k (an arbitrary constant) be the intercept of the required straight line. Then the equation of the straight line is

y = - \(\frac{a}{b}\) x + k

by = - ax + bk        

ax +  by = λ, Where λ = bk = another arbitrary constant.

Note: (i) Assigning different values to λ in ax + by = λ we shall get different straight lines each of which is parallel to the line ax + by + c = 0. Thus, we can have a family of straight lines parallel to a given line.

(ii) To write a line parallel to a given line we keep the expression containing x and y same and simply replace the given constant by a new constant λ. The value of λ can be determined by some given condition.

To get it more clear let us compare the equation ax + by = λ with equation ax + by + c = 0. It follows that to write the equation of a line parallel to a given straight line we simply need to replace the given constant by an arbitrary constant, the terms with x and y remain unaltered. For example, the equation of a straight line parallel to the straight line 7x - 5y + 9 = 0 is 7x - 5y + λ = 0 where λ is an arbitrary constant.

Solved examples to find the equations of straight lines parallel to a given line:

1.  Find the equation of the straight line which is parallel to 5x - 7y = 0 and passing through the point (2, - 3).

Solution:    

The equation of any straight line parallel to the line 5x - 7y = 0 is 5x - 7y + λ = 0 …………… (i)  [Where λ is an arbitrary constant].

If the line (i) passes through the point (2, - 3) then we shall have,

5 ∙ 2 - 7 ∙ (-3) + λ = 0

10 + 21 + λ = 0

31 + λ = 0

λ = -31

Therefore, the equation of the required straight line is 5x - 7y - 31 = 0.


2. Find the equation of the straight line passing through the point (5, - 6) and parallel to the straight line 3x - 2y + 10 = 0.

Solution:

The equation of any straight line parallel to the line 3x - 2y + 10 = 0 is 3x - 2y + k = 0 …………… (i) [Where k is an arbitrary constant].

According to the problem, the line (i) passes through the point (5, - 6) then we shall have,

3 ∙ 5 - 2 ∙ (-6) + k = 0

15 + 21 + k = 0

36 + k = 0

k = -36

Therefore, the equation of the required straight line is 3x - 2y - 36 = 0.

 The Straight Line





11 and 12 Grade Math 

From Equation of a Line Parallel to a Line to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    Sep 15, 24 04:57 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Sep 15, 24 04:08 PM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Comparison of Three-digit Numbers | Arrange 3-digit Numbers |Questions

    Sep 15, 24 03:16 PM

    What are the rules for the comparison of three-digit numbers? (i) The numbers having less than three digits are always smaller than the numbers having three digits as:

    Read More

  4. 2nd Grade Place Value | Definition | Explanation | Examples |Worksheet

    Sep 14, 24 04:31 PM

    2nd Grade Place Value
    The value of a digit in a given number depends on its place or position in the number. This value is called its place value.

    Read More

  5. Three Digit Numbers | What is Spike Abacus? | Abacus for Kids|3 Digits

    Sep 14, 24 03:39 PM

    2 digit numbers table
    Three digit numbers are from 100 to 999. We know that there are nine one-digit numbers, i.e., 1, 2, 3, 4, 5, 6, 7, 8 and 9. There are 90 two digit numbers i.e., from 10 to 99. One digit numbers are ma

    Read More