General Form into Intercept Form

We will learn the transformation of general form into intercept form.

To reduce the general equation ax + by + c = 0 into intercept form (xa + yb = 1):

We have the general equation ax + by + c = 0.

If a ≠ 0, b ≠ 0, c ≠ 0 then from the given equation we get, 

ax + by = - c (Subtracting c from both sides)

axc + byc = cc, (Dividing both sides by -c)

⇒ axc + byc = 1

xca + ycb = 1, which is the required intercept form (xa + yb = 1) of the general form of line ax + by + c = 0.

Thus, for the straight line ax + by + c = 0,

Intercept on x-axis = -(ca)  = - Constant termCoefficient of x

Intercept on y-axis = -(cb)  = - Constant termCoefficient of y


Note: From the above discussion we conclude that the intercepts made by a straight line with the co-ordinate axes can be determined by transforming its equation to intercept form. To determine the intercepts on the co-ordinate axes we can also use the following method:

To find the intercept on x-axis (i.e., x-intercept), put y = 0 in the given equation of the straight line line and find the value of x. Similarly To find the intercept on y-axis (i.e., y-intercept), put x = 0 in the given equation of the straight line and find the value of y.


Solved examples on transformation of general equation into intercept form:

1. Transform the equation of the straight line 3x + 2y - 18 = 0 to intercept form and find its x-intercept and y-intercept.

Solution:

The given equation of the straight line 3x + 2y - 18 = 0

First add 18 on both sides.

⇒ 3x + 2y =18

Now divide both sides by 18

3x18 + 2y18 = 1818

x6 + y9  = 1,

which is the required intercept form of the given straight line 3x + 2y - 18 = 0.

Therefore, x-intercept = 6 and y-intercept = 9.

 

2. Reduce the equation -5x + 4y = 8 into intercept form and find its intercepts.

Solution:

The given equation of the straight line -7x + 4y = -8.

First divide both sides by -8

7x8 + 4y8 = 8x8

7x8 + y2 = 1

x87 + y2 = 1,

which is the required intercept form of the given straight line -5x + 4y = 8.

Therefore, x-intercept = 87  and y-intercept = -2.

 The Straight Line






11 and 12 Grade Math 

From General Form into Intercept Form to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication by Ten, Hundred and Thousand |Multiply by 10, 100 &1000

    May 01, 25 11:57 PM

    Multiply by 10
    To multiply a number by 10, 100, or 1000 we need to count the number of zeroes in the multiplier and write the same number of zeroes to the right of the multiplicand. Rules for the multiplication by 1…

    Read More

  2. Adding and Subtracting Large Decimals | Examples | Worksheet | Answers

    May 01, 25 03:01 PM

    Here we will learn adding and subtracting large decimals. We have already learnt how to add and subtract smaller decimals. Now we will consider some examples involving larger decimals.

    Read More

  3. Converting Fractions to Decimals | Solved Examples | Free Worksheet

    Apr 28, 25 01:43 AM

    Converting Fractions to Decimals
    In converting fractions to decimals, we know that decimals are fractions with denominators 10, 100, 1000 etc. In order to convert other fractions into decimals, we follow the following steps:

    Read More

  4. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Apr 27, 25 10:13 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  5. Converting Decimals to Fractions | Solved Examples | Free Worksheet

    Apr 26, 25 04:56 PM

    Converting Decimals to Fractions
    In converting decimals to fractions, we know that a decimal can always be converted into a fraction by using the following steps: Step I: Obtain the decimal. Step II: Remove the decimal points from th…

    Read More