General Form into Intercept Form

We will learn the transformation of general form into intercept form.

To reduce the general equation ax + by + c = 0 into intercept form (\(\frac{x}{a}\) + \(\frac{y}{b}\) = 1):

We have the general equation ax + by + c = 0.

If a ≠ 0, b ≠ 0, c ≠ 0 then from the given equation we get, 

ax + by = - c (Subtracting c from both sides)

⇒ \(\frac{ax}{-c}\) + \(\frac{by}{-c}\) = \(\frac{-c}{-c}\), (Dividing both sides by -c)

⇒ \(\frac{ax}{-c}\) + \(\frac{by}{-c}\) = 1

⇒ \(\frac{x}{-\frac{c}{a}}\) + \(\frac{y}{-\frac{c}{b}}\) = 1, which is the required intercept form (\(\frac{x}{a}\) + \(\frac{y}{b}\) = 1) of the general form of line ax + by + c = 0.

Thus, for the straight line ax + by + c = 0,

Intercept on x-axis = -(\(\frac{c}{a}\))  = - \(\frac{\textrm{Constant term}}{\textrm{Coefficient of x}}\)

Intercept on y-axis = -(\(\frac{c}{b}\))  = - \(\frac{\textrm{Constant term}}{\textrm{Coefficient of y}}\)


Note: From the above discussion we conclude that the intercepts made by a straight line with the co-ordinate axes can be determined by transforming its equation to intercept form. To determine the intercepts on the co-ordinate axes we can also use the following method:

To find the intercept on x-axis (i.e., x-intercept), put y = 0 in the given equation of the straight line line and find the value of x. Similarly To find the intercept on y-axis (i.e., y-intercept), put x = 0 in the given equation of the straight line and find the value of y.


Solved examples on transformation of general equation into intercept form:

1. Transform the equation of the straight line 3x + 2y - 18 = 0 to intercept form and find its x-intercept and y-intercept.

Solution:

The given equation of the straight line 3x + 2y - 18 = 0

First add 18 on both sides.

⇒ 3x + 2y =18

Now divide both sides by 18

⇒ \(\frac{3x}{18}\) + \(\frac{2y}{18}\) = \(\frac{18}{18}\)

⇒ \(\frac{x}{6}\) + \(\frac{y}{9}\)  = 1,

which is the required intercept form of the given straight line 3x + 2y - 18 = 0.

Therefore, x-intercept = 6 and y-intercept = 9.

 

2. Reduce the equation -5x + 4y = 8 into intercept form and find its intercepts.

Solution:

The given equation of the straight line -7x + 4y = -8.

First divide both sides by -8

⇒ \(\frac{-7x}{-8}\) + \(\frac{4y}{-8}\) = \(\frac{-8x}{-8}\)

⇒ \(\frac{7x}{8}\) + \(\frac{y}{-2}\) = 1

⇒ \(\frac{x}{\frac{8}{7}}\) + \(\frac{y}{-2}\) = 1,

which is the required intercept form of the given straight line -5x + 4y = 8.

Therefore, x-intercept = \(\frac{8}{7}\)  and y-intercept = -2.

 The Straight Line






11 and 12 Grade Math 

From General Form into Intercept Form to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 18, 24 02:58 AM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More

  2. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Apr 18, 24 02:15 AM

    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More

  3. Simple Closed Curves | Types of Closed Curves | Collection of Curves

    Apr 18, 24 01:36 AM

    Closed Curves Examples
    In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

    Read More

  4. Tangrams Math | Traditional Chinese Geometrical Puzzle | Triangles

    Apr 18, 24 12:31 AM

    Tangrams
    Tangram is a traditional Chinese geometrical puzzle with 7 pieces (1 parallelogram, 1 square and 5 triangles) that can be arranged to match any particular design. In the given figure, it consists of o…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Apr 17, 24 01:32 PM

    Duration of Time
    We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton every evening. Yesterday, their game started at 5 : 15 p.m.

    Read More