Subscribe to our YouTube channel for the latest videos, updates, and tips.


Bisector of the Angle which Contains the Origin

We will learn how to find the equation of the bisector of the angle which contains the origin.

Algorithm to determine whether the origin lines in the obtuse angle or acute angle between the lines

Let the equation of the two lines be a\(_{1}\)x + b\(_{1}\)y + c\(_{1}\) = 0 and a\(_{2}\)x + b\(_{2}\)y + c\(_{2}\) = 0.

To determine whether the origin lines in the acute angles or obtuse angle between the lines we proceed as follows:

Step I: Obtain whether the constant terms c\(_{1}\) and c\(_{2}\) in the equations of the two lines are positive or not. Suppose not, make them positive by multiplying both sides of the equations by negative sign.

Step II: Determine the sign of a\(_{1}\)a\(_{2}\) + b\(_{1}\)b\(_{2}\).


Step III: If a\(_{1}\)a\(_{2}\) + b\(_{1}\)b\(_{2}\) > 0, then the origin lies in the obtuse angle and the “ + “ symbol gives the bisector of the obtuse angle. If a\(_{1}\)a\(_{2}\) + b\(_{1}\)b\(_{2}\) < 0, then the origin lies in the acute angle and the “ Positive (+) “ symbol gives the bisector of the acute angle i.e.,

\(\frac{a_{1}x + b_{1}y + c_{1}}{\sqrt{a_{1}^{2} + b_{1}^{2}}}\) = + \(\frac{a_{2}x + b_{2}y + c_{2}}{\sqrt{a_{2}^{2} + b_{2}^{2}}}\)


Solved examples on the equation of the bisector of the angle which contains the origin:

1. Find the equations of the two bisectors of the angles between the straight lines 3x + 4y + 1 = 0 and 8x - 6y - 3 = 0. Which of the two bisectors bisects the angle containing the origin?

Solution:

3x + 4y + 1 = 0 ……….. (i)

8x - 6y - 3 = 0 ……….. (ii)  

The equations of the two bisectors of the angles between the lines (i) and (ii)

\(\frac{3x + 4y + 1}{\sqrt{3^{2} + 4^{2}}}\) = + \(\frac{8x - 6y - 3}{\sqrt{8^{2} + (-6)^{2}}}\)

⇒ 2 (3x + 4y + 1) = (8x - 6y - 3)

Therefore, the required two bisectors are given by,

6x + 8y + 2 = 8x+ 6y - 3 (taking `+' sign)

⇒ 2x - 14y = 5

And 6x+ 8y + 2 = - 8x + 6y + 3 (taking `-' sign)

⇒ 14x + 2y = 1

Since the constant terms in (i) and (ii) are of opposite signs, hence the bisector which bisects the angle containing the origin is

2 (3x + 4y + 1) = - (8x - 6y - 3)

⇒ 14x + 2y= 1.

 

2. For the straight lines 4x + 3y - 6 = 0 and 5x + 12y + 9 = 0 find the equation of the bisector of the angle which contains the origin.

Solution:

To find the bisector of the angle between the lines which contains the origin, we first write down the equations of the given lines in such a form that the constant terms in the equations of the lines are positive. The equations of the given lines are

4x + 3y - 6 = 0 ⇒ -4x - 3y + 6 = 0 ……………………. (i)

5x + 12y + 9 = 0 ……………………. (ii)

Now the equation of the bisector of the angle between the lines which contains the origin is the bisector corresponding to the positive symbol i.e.,

\(\frac{-4x - 3y + 6}{\sqrt{(-4)^{2} + (-3)^{2}}}\) = + \(\frac{5x + 12y + 9}{\sqrt{5^{2} + 12^{2}}}\)

⇒ -52x – 39 y + 78 = 25x + 60y + 45

⇒ 7x + 9y – 3 = 0

Form (i) and (ii), we have a1a2 + b1b2 = -20 – 36 = -56 <0.

Therefore, the origin is situated in an acute angle region and the bisector of this angle is 7x + 9y – 3 = 0.

 The Straight Line




11 and 12 Grade Math 

From Bisector of the Angle which Contains the Origin to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Conversion of Temperature | Temperature Worksheets | Ans

    Jun 24, 25 02:20 AM

    Worksheet on Conversion of Temperature
    We will practice the questions given in the worksheet on conversion of temperature from one scale into another. We know the two different temperature scales are the Fahrenheit scale and the

    Read More

  2. Worksheet on Temperature |Celsius to Fahrenheit, Fahrenheit to Celsius

    Jun 24, 25 01:58 AM

    Worksheet on Temperature
    In the worksheet on temperature we will solve 10 different types of questions.1. Which is colder 32°F or 0°C? 2. Water boils at ...°C and freezes at ....°F.

    Read More

  3. 5th Grade Temperature | Fahrenheit Scale | Celsius Scale | Thermometer

    Jun 24, 25 12:28 AM

    Mercury Thermometer
    We will discuss here about the concept of temperature. We have already learned about various types of measurements like length, mass capacity and time. But if we have fever, non of these measurements

    Read More

  4. Converting the Temperature from Fahrenheit to Celsius | Examples

    Jun 20, 25 12:53 PM

    In converting the temperature from Fahrenheit to Celsius the formula is, C = (5/9)(F - 32); The steps of converting from Fahrenheit to Celsius are reversed here.

    Read More

  5. Converting the Temperature from Celsius to Fahrenheit | Examples

    Jun 20, 25 12:01 PM

    In converting the temperature from Celsius to Fahrenheit the formula is F = (9/5)C + 32. Steps of converting from Celsius (°C) to Fahrenheit (°F)

    Read More