Bisector of the Angle which Contains the Origin

We will learn how to find the equation of the bisector of the angle which contains the origin.

Algorithm to determine whether the origin lines in the obtuse angle or acute angle between the lines

Let the equation of the two lines be a\(_{1}\)x + b\(_{1}\)y + c\(_{1}\) = 0 and a\(_{2}\)x + b\(_{2}\)y + c\(_{2}\) = 0.

To determine whether the origin lines in the acute angles or obtuse angle between the lines we proceed as follows:

Step I: Obtain whether the constant terms c\(_{1}\) and c\(_{2}\) in the equations of the two lines are positive or not. Suppose not, make them positive by multiplying both sides of the equations by negative sign.

Step II: Determine the sign of a\(_{1}\)a\(_{2}\) + b\(_{1}\)b\(_{2}\).


Step III: If a\(_{1}\)a\(_{2}\) + b\(_{1}\)b\(_{2}\) > 0, then the origin lies in the obtuse angle and the “ + “ symbol gives the bisector of the obtuse angle. If a\(_{1}\)a\(_{2}\) + b\(_{1}\)b\(_{2}\) < 0, then the origin lies in the acute angle and the “ Positive (+) “ symbol gives the bisector of the acute angle i.e.,

\(\frac{a_{1}x + b_{1}y + c_{1}}{\sqrt{a_{1}^{2} + b_{1}^{2}}}\) = + \(\frac{a_{2}x + b_{2}y + c_{2}}{\sqrt{a_{2}^{2} + b_{2}^{2}}}\)


Solved examples on the equation of the bisector of the angle which contains the origin:

1. Find the equations of the two bisectors of the angles between the straight lines 3x + 4y + 1 = 0 and 8x - 6y - 3 = 0. Which of the two bisectors bisects the angle containing the origin?

Solution:

3x + 4y + 1 = 0 ……….. (i)

8x - 6y - 3 = 0 ……….. (ii)  

The equations of the two bisectors of the angles between the lines (i) and (ii)

\(\frac{3x + 4y + 1}{\sqrt{3^{2} + 4^{2}}}\) = + \(\frac{8x - 6y - 3}{\sqrt{8^{2} + (-6)^{2}}}\)

⇒ 2 (3x + 4y + 1) = (8x - 6y - 3)

Therefore, the required two bisectors are given by,

6x + 8y + 2 = 8x+ 6y - 3 (taking `+' sign)

⇒ 2x - 14y = 5

And 6x+ 8y + 2 = - 8x + 6y + 3 (taking `-' sign)

⇒ 14x + 2y = 1

Since the constant terms in (i) and (ii) are of opposite signs, hence the bisector which bisects the angle containing the origin is

2 (3x + 4y + 1) = - (8x - 6y - 3)

⇒ 14x + 2y= 1.

 

2. For the straight lines 4x + 3y - 6 = 0 and 5x + 12y + 9 = 0 find the equation of the bisector of the angle which contains the origin.

Solution:

To find the bisector of the angle between the lines which contains the origin, we first write down the equations of the given lines in such a form that the constant terms in the equations of the lines are positive. The equations of the given lines are

4x + 3y - 6 = 0 ⇒ -4x - 3y + 6 = 0 ……………………. (i)

5x + 12y + 9 = 0 ……………………. (ii)

Now the equation of the bisector of the angle between the lines which contains the origin is the bisector corresponding to the positive symbol i.e.,

\(\frac{-4x - 3y + 6}{\sqrt{(-4)^{2} + (-3)^{2}}}\) = + \(\frac{5x + 12y + 9}{\sqrt{5^{2} + 12^{2}}}\)

⇒ -52x – 39 y + 78 = 25x + 60y + 45

⇒ 7x + 9y – 3 = 0

Form (i) and (ii), we have a1a2 + b1b2 = -20 – 36 = -56 <0.

Therefore, the origin is situated in an acute angle region and the bisector of this angle is 7x + 9y – 3 = 0.

 The Straight Line




11 and 12 Grade Math 

From Bisector of the Angle which Contains the Origin to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Subtracting Integers | Subtraction of Integers |Fundamental Operations

    Jun 13, 24 02:51 AM

    Subtracting integers is the second operations on integers, among the four fundamental operations on integers. Change the sign of the integer to be subtracted and then add.

    Read More

  2. Properties of Subtracting Integers | Subtraction of Integers |Examples

    Jun 13, 24 02:28 AM

    The properties of subtracting integers are explained here along with the examples. 1. The difference (subtraction) of any two integers is always an integer. Examples: (a) (+7) – (+4) = 7 - 4 = 3

    Read More

  3. Math Only Math | Learn Math Step-by-Step | Worksheet | Videos | Games

    Jun 13, 24 12:11 AM

    Presenting math-only-math to kids, students and children. Mathematical ideas have been explained in the simplest possible way. Here you will have plenty of math help and lots of fun while learning.

    Read More

  4. Addition of Integers | Adding Integers on a Number Line | Examples

    Jun 12, 24 01:11 PM

    Addition of Integers
    We will learn addition of integers using number line. We know that counting forward means addition. When we add positive integers, we move to the right on the number line. For example to add +2 and +4…

    Read More

  5. Worksheet on Adding Integers | Integers Worksheets | Answers |Addition

    Jun 11, 24 07:15 PM

    Worksheet on Adding Integers
    Practice the questions given in the worksheet on adding integers. We know that the sum of any two integers is always an integer. I. Add the following integers:

    Read More