Bisector of the Angle which Contains the Origin

We will learn how to find the equation of the bisector of the angle which contains the origin.

Algorithm to determine whether the origin lines in the obtuse angle or acute angle between the lines

Let the equation of the two lines be a\(_{1}\)x + b\(_{1}\)y + c\(_{1}\) = 0 and a\(_{2}\)x + b\(_{2}\)y + c\(_{2}\) = 0.

To determine whether the origin lines in the acute angles or obtuse angle between the lines we proceed as follows:

Step I: Obtain whether the constant terms c\(_{1}\) and c\(_{2}\) in the equations of the two lines are positive or not. Suppose not, make them positive by multiplying both sides of the equations by negative sign.

Step II: Determine the sign of a\(_{1}\)a\(_{2}\) + b\(_{1}\)b\(_{2}\).


Step III: If a\(_{1}\)a\(_{2}\) + b\(_{1}\)b\(_{2}\) > 0, then the origin lies in the obtuse angle and the “ + “ symbol gives the bisector of the obtuse angle. If a\(_{1}\)a\(_{2}\) + b\(_{1}\)b\(_{2}\) < 0, then the origin lies in the acute angle and the “ Positive (+) “ symbol gives the bisector of the acute angle i.e.,

\(\frac{a_{1}x + b_{1}y + c_{1}}{\sqrt{a_{1}^{2} + b_{1}^{2}}}\) = + \(\frac{a_{2}x + b_{2}y + c_{2}}{\sqrt{a_{2}^{2} + b_{2}^{2}}}\)


Solved examples on the equation of the bisector of the angle which contains the origin:

1. Find the equations of the two bisectors of the angles between the straight lines 3x + 4y + 1 = 0 and 8x - 6y - 3 = 0. Which of the two bisectors bisects the angle containing the origin?

Solution:

3x + 4y + 1 = 0 ……….. (i)

8x - 6y - 3 = 0 ……….. (ii)  

The equations of the two bisectors of the angles between the lines (i) and (ii)

\(\frac{3x + 4y + 1}{\sqrt{3^{2} + 4^{2}}}\) = + \(\frac{8x - 6y - 3}{\sqrt{8^{2} + (-6)^{2}}}\)

⇒ 2 (3x + 4y + 1) = (8x - 6y - 3)

Therefore, the required two bisectors are given by,

6x + 8y + 2 = 8x+ 6y - 3 (taking `+' sign)

⇒ 2x - 14y = 5

And 6x+ 8y + 2 = - 8x + 6y + 3 (taking `-' sign)

⇒ 14x + 2y = 1

Since the constant terms in (i) and (ii) are of opposite signs, hence the bisector which bisects the angle containing the origin is

2 (3x + 4y + 1) = - (8x - 6y - 3)

⇒ 14x + 2y= 1.

 

2. For the straight lines 4x + 3y - 6 = 0 and 5x + 12y + 9 = 0 find the equation of the bisector of the angle which contains the origin.

Solution:

To find the bisector of the angle between the lines which contains the origin, we first write down the equations of the given lines in such a form that the constant terms in the equations of the lines are positive. The equations of the given lines are

4x + 3y - 6 = 0 ⇒ -4x - 3y + 6 = 0 ……………………. (i)

5x + 12y + 9 = 0 ……………………. (ii)

Now the equation of the bisector of the angle between the lines which contains the origin is the bisector corresponding to the positive symbol i.e.,

\(\frac{-4x - 3y + 6}{\sqrt{(-4)^{2} + (-3)^{2}}}\) = + \(\frac{5x + 12y + 9}{\sqrt{5^{2} + 12^{2}}}\)

⇒ -52x – 39 y + 78 = 25x + 60y + 45

⇒ 7x + 9y – 3 = 0

Form (i) and (ii), we have a1a2 + b1b2 = -20 – 36 = -56 <0.

Therefore, the origin is situated in an acute angle region and the bisector of this angle is 7x + 9y – 3 = 0.

 The Straight Line




11 and 12 Grade Math 

From Bisector of the Angle which Contains the Origin to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. BODMAS Rule | Order of Operation | Definition, Examples, Problems

    Mar 27, 25 03:02 AM

    Easy and simple way to remember BODMAS rule!! B → Brackets first (parentheses) O → Of (orders i.e. Powers and Square Roots, Cube Roots, etc.) DM → Division and Multiplication

    Read More

  2. 5th Grade Math Worksheets | 5th Grade Homework Sheets | Math Worksheet

    Mar 27, 25 02:46 AM

    5th grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  3. 5th Grade Relation Between HCF and LCM | Solved Examples | Worksheet

    Mar 27, 25 02:34 AM

    Here we will discuss about the relationship between hcf and lcm of two numbers. Product of two numbers = Product of H.C.F. and L.C.M. of the numbers. Solved Examples on 5th Grade Relation Between HCF…

    Read More

  4. 5th Grade Word Problems on H.C.F. and L.C.M. | Worksheet with Answers

    Mar 27, 25 02:33 AM

    L.C.M. of 8, 24 and 32 by Long Division Method
    Here we will solve different types of word Problems on H.C.F. and L.C.M. Find the smallest number which when divided by 8, 24 and 32 when leaves 7 as remainder in each. 1. Find the lowest number which…

    Read More

  5. Divisible by 3 | Test of Divisibility by 3 |Rules of Divisibility by 3

    Mar 26, 25 11:08 AM

    Divisible by 3
    A number is divisible by 3, if the sum of its all digits is a multiple of 3 or divisibility by 3. Consider the following numbers to find whether the numbers are divisible or not divisible by 3: (i) 54…

    Read More