Processing math: 100%

Slope of a Line through Two Given Points

How to find the slope of a line through two given points?

Let (x1, y1) and (x2, y2) be two given cartesian co-ordinates of the point A and B respectively referred to rectangular co-ordinate axes XOX' and YOY'.

Again let the straight line AB makes an angle θ with the positive x-axis in the anticlockwise direction. 

Now by definition, the slope of the line AB is tan θ.

Therefore, we have to find the value of m = tan θ.

Draw AE and BD perpendiculars on x-axis and from B draw BC perpendiculars on AE. Then,

AE = y1, BD = y2, OE = x1 and OD = x2

Therefore, BC = DE = OE - OD = x1 - x2  

Again, AC = AE - CE = AE - BD = y1 - y2

<ABC = θ, since, BC parallel to x-axis.

Therefore, from the right angle ∆ABC we get,

tan θ = ACBC = y1y2x1x2

⇒ tan θ = y2y1x2x1

Therefore, the required slop of the line passing through the points A (x1, y1) and B (x2, y2) is

m = tan θ = y2y1x2x1 = Difference of ordinates of the given pointDifference of abscissa of the given point


Solved example to find the slope of a line passes through two given points:

Find the slope of a straight line which passes through points (-5, 7) and (-4, 8).

Solution:

We know that the slope of a straight line passes through two points (x1, y1) and (x2, y2) is given by m = y2y1x2x1. Here the straight line passes through (-5, 7) and (-4, 8). Therefore, the slope of the straight line is given by m = 874(5) = 14+5 = 11 = 1

 

Note:

1. Slop of two parallel lines are equal.

2. Slope of x-axis or slope of a straight line parallel to x-axis is zero, since we know that tan 0° = 0.

3. Slop of y-axis or slope of a straight line parallel to y-axis is undefined, since we know that tan 90° is undefined.

4. We know that co-ordinate of the origin is (0, 0). If O be the origin and M (x, y) be a given point, then the slope of the line OM is yx.

5. The slop of the line is the change in the value of ordinate of any point on the line for unit change in the value of abscissa.

 The Straight Line





11 and 12 Grade Math

From Slope of a Line through Two Given Points to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More