Subscribe to our YouTube channel for the latest videos, updates, and tips.


Intercepts on the Axes made by a Circle

We will learn how to find the intercepts on the axes made by a circle.

The lengths of intercepts made by the circle x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 with X and Y axes are 2\(\mathrm{\sqrt{g^{2} - c}}\) and 2\(\mathrm{\sqrt{f^{2} - c}}\) respectively.

Proof:

Let the given equation of the circle be x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 ………. (1)

Clearly, the centre of the circle is c (-g, -f) and the radius = \(\mathrm{\sqrt{g^{2} + f^{2}- c}}\)

Let AB be the intercept made by the given circle on x-axe. Since on x-axis, y = 0. Therefore, x-coordinates of the points A and B are the roots of the equation x\(^{2}\) + 2gx + c = 0.

Let x\(_{1}\) and x\(_{2}\) be the x-coordinates of the points A and B respectively. Then, x\(_{1}\) and x\(_{2}\) also the roots of the equation x\(^{2}\) + 2gx + c = 0.

Therefore, x\(_{1}\) + x\(_{2}\) = - 2g and x\(_{1}\)x\(_{2}\) = c

Clearly the intercept on x-axis = AB

                                          = x\(_{2}\) - x\(_{1}\) = \(\mathrm{\sqrt{(x_{2} - x_{1})^{2}}}\)

                                          = \(\mathrm{\sqrt{(x_{2} + x_{1})^{2} - 4x_{1}x_{2}}}\)

                                          = \(\mathrm{\sqrt{4g^{2} - 4c}}\)

                                          = 2\(\mathrm{\sqrt{g^{2} - c}}\)

Therefore, the intercept made by the circle (1) on the x-axis = 2\(\mathrm{\sqrt{g^{2} - c}}\)

Again,

Let DE be the intercept made by the given circle on y-axe. Since on y-axis, x = 0. Therefore, y-coordinates of the points D and E are the roots of the equation y\(^{2}\) + 2fy + c = 0.

Let y\(_{1}\) and y\(_{2}\) be the x-coordinates of the points D and E respectively. Then, y\(_{1}\) and y\(_{2}\) also the roots of the equation y\(^{2}\) + 2fy + c = 0

Therefore, y\(_{1}\) + y\(_{2}\) = - 2f and y\(_{1}\)y\(_{2}\) = c

Clearly the intercept on y-axis = DE

                                          = y\(_{2}\) - y\(_{1}\) = \(\mathrm{\sqrt{(y_{2} - y_{1})^{2}}}\)

                                          = \(\mathrm{\sqrt{(y_{2} + y_{1})^{2} – 4y_{1}y_{2}}}\)

                                          = \(\mathrm{\sqrt{4f^{2} - 4c}}\)

                                          = 2\(\mathrm{\sqrt{f^{2} - c}}\)

Therefore, the intercept made by the circle (1) on the y-axis = 2\(\mathrm{\sqrt{f^{2} - c}}\)

Solved examples to find the intercepts made by a given circle on the co-ordinate axes:

1. Find the length of the x-intercept and y-intercept made by the circle x\(^{2}\) + y\(^{2}\) - 4x -6y - 5 = 0 with the co-ordinate axes.

Solution:

Given equation of the circle is x\(^{2}\) + y\(^{2}\) - 4x -6y - 5 = 0.

Now comparing the given equation with the general equation of the circle x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0, we get g = -2 and f = -3 and c = -5

Therefore, length of the x-intercept = 2\(\mathrm{\sqrt{g^{2} - c}}\) = 2\(\mathrm{\sqrt{4 - (-5) }}\) = 2√9 = 6.

The length of the y-intercept = 2\(\mathrm{\sqrt{f^{2} - c}}\) = 2\(\mathrm{\sqrt{9 - (-5) }}\) = 2√14.


2. Find the equation of a circle which touches the y-axis at a distance -3 from the origin and cuts an intercept of 8 units with the positive direction of x-axis.

Solution:

Let the equation of the circle be x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 …………….. (i)

According to the problem, the equation (i) touches the y-axis

Therefore, c = f\(^{2}\) ………………… (ii)

Again, the point (0, -3) lies on the circle (i).

Therefore, putting the value of x = 0 and y = -3 in (i) we get,

9 - 6f + c = 0 …………………… (iii)

From (ii) and (iii), we get 9 - 6f + f\(^{2}\) = 0 ⇒ (f - 3)\(^{2}\) = 0 ⇒ f - 3 = 0 ⇒ f = 3

Now putting f = 3 in (i) we get, c = 9

Again, according to the problem the equation of the circle (i) cuts an intercept of 8 units with the positive direction of x-axis.

Therefore,

2\(\mathrm{\sqrt{g^{2} - c}}\) = 8

⇒ 2\(\mathrm{\sqrt{g^{2} - 9}}\) = 8

⇒ \(\mathrm{\sqrt{g^{2} - 9}}\) = 4

⇒ g\(^{2}\) - 9 = 16, [Squaring both sides]

⇒ g\(^{2}\) = 16 + 9

⇒ g\(^{2}\) = 25

⇒ g = ±5.

Hence, the required equation of the circle is x^2 + y^2 ± 10x + 6y + 9 = 0.

 The Circle




11 and 12 Grade Math 

From Intercepts on the Axes made by a Circle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Conversion of Temperature | Temperature Worksheets | Ans

    Jun 24, 25 02:20 AM

    Worksheet on Conversion of Temperature
    We will practice the questions given in the worksheet on conversion of temperature from one scale into another. We know the two different temperature scales are the Fahrenheit scale and the

    Read More

  2. Worksheet on Temperature |Celsius to Fahrenheit, Fahrenheit to Celsius

    Jun 24, 25 01:58 AM

    Worksheet on Temperature
    In the worksheet on temperature we will solve 10 different types of questions.1. Which is colder 32°F or 0°C? 2. Water boils at ...°C and freezes at ....°F.

    Read More

  3. 5th Grade Temperature | Fahrenheit Scale | Celsius Scale | Thermometer

    Jun 24, 25 12:28 AM

    Mercury Thermometer
    We will discuss here about the concept of temperature. We have already learned about various types of measurements like length, mass capacity and time. But if we have fever, non of these measurements

    Read More

  4. Converting the Temperature from Fahrenheit to Celsius | Examples

    Jun 20, 25 12:53 PM

    In converting the temperature from Fahrenheit to Celsius the formula is, C = (5/9)(F - 32); The steps of converting from Fahrenheit to Celsius are reversed here.

    Read More

  5. Converting the Temperature from Celsius to Fahrenheit | Examples

    Jun 20, 25 12:01 PM

    In converting the temperature from Celsius to Fahrenheit the formula is F = (9/5)C + 32. Steps of converting from Celsius (°C) to Fahrenheit (°F)

    Read More