Circle Formulae

Circle formulae will help us to solve different types of problems on circle in co-ordinate geometry. 

(i) The equation of a circle with centre at (h, k) and radius equals to ‘a’ units is (x - h)\(^{2}\) + (y - k)\(^{2}\) = a\(^{2}\).

(ii) The general form of the equation of a circle is x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0, where the co-ordinates of the centre are (-g, -f) and radius = \(\mathrm{\sqrt{g^{2} + f^{2} - c}}\) units.

(iii) The equation of a circle with centre at the origin O and radius equals to ‘a’ is x\(^{2}\) + y\(^{2}\) = a\(^{2}\)

(iv) The parametric form of the equation of the circle x\(^{2}\) + y\(^{2}\) = r\(^{2}\) is x = r cos θ, y = r sin θ.

(iv) The general second degree equation in x and y (ax\(^{2}\) + 2hxy + by\(^{2}\) + 2gx + 2fy + c = 0) represents a circle if coefficient of x\(^{2}\) (i.e., a) = coefficient of y\(^{2}\) (i.e., b) and coefficient of xy (i.e., h) = 0.

(v) The equation of the circle drawn on the straight line joining two given points (x\(_{1}\), y\(_{1}\)) and (x\(_{2}\), y\(_{2}\)) as diameter is (x - x\(_{1}\))(x - x\(_{2}\)) + (y - y\(_{1}\))(y - y\(_{2}\)) = 0

(vi) A point (x\(_{1}\), y\(_{1}\)) lies outside, on or inside a circle S = x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 according as S\(_{1}\) > = or <0, where S\(_{1}\) = x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c.

(vii) The equation of the common chord of the intersecting  circles x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\) = 0 and x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\) = 0 is 2(g\(_{1}\) - g\(_{2}\)) x + 2(f\(_{1}\) - f\(_{2}\)) y + c\(_{1}\) - c\(_{2}\) = 0.

(viii) The equation of any circle through the points of intersection of the circles x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\) = 0 and x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\) = 0 is x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\) x + 2f\(_{1}\)y + c\(_{1}\) + k (x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\)) = 0 (k ≠ -1).

(ix) The equation of a circle concentric with the circle x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 is  x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c' = 0.

(x) The lengths of intercepts made by the circle x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 with X and Y axes are 2\(\mathrm{\sqrt{g^{2} - c}}\) and 2\(\mathrm{\sqrt{f^{2} - c}}\) respectively.

 The Circle




11 and 12 Grade Math 

From Circle Formulae to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. BODMAS Rule | Order of Operation | Definition, Examples, Problems

    Mar 27, 25 03:02 AM

    Easy and simple way to remember BODMAS rule!! B → Brackets first (parentheses) O → Of (orders i.e. Powers and Square Roots, Cube Roots, etc.) DM → Division and Multiplication

    Read More

  2. 5th Grade Math Worksheets | 5th Grade Homework Sheets | Math Worksheet

    Mar 27, 25 02:46 AM

    5th grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  3. 5th Grade Relation Between HCF and LCM | Solved Examples | Worksheet

    Mar 27, 25 02:34 AM

    Here we will discuss about the relationship between hcf and lcm of two numbers. Product of two numbers = Product of H.C.F. and L.C.M. of the numbers. Solved Examples on 5th Grade Relation Between HCF…

    Read More

  4. 5th Grade Word Problems on H.C.F. and L.C.M. | Worksheet with Answers

    Mar 27, 25 02:33 AM

    L.C.M. of 8, 24 and 32 by Long Division Method
    Here we will solve different types of word Problems on H.C.F. and L.C.M. Find the smallest number which when divided by 8, 24 and 32 when leaves 7 as remainder in each. 1. Find the lowest number which…

    Read More

  5. Divisible by 3 | Test of Divisibility by 3 |Rules of Divisibility by 3

    Mar 26, 25 11:08 AM

    Divisible by 3
    A number is divisible by 3, if the sum of its all digits is a multiple of 3 or divisibility by 3. Consider the following numbers to find whether the numbers are divisible or not divisible by 3: (i) 54…

    Read More