Equation of a Circle when the Line Segment Joining Two Given Points is a Diameter

We will learn how to find the equation of the circle for which the line segment joining two given points is a diameter.

the equation of the circle drawn on the straight line joining two given points (x\(_{1}\), y\(_{1}\)) and (x\(_{2}\), y\(_{2}\)) as diameter is (x - x\(_{1}\))(x - x\(_{2}\))  + (y - y\(_{1}\))(y - y\(_{2}\)) = 0


First Method:

Let P (x\(_{1}\), y\(_{1}\)) and Q (x\(_{2}\), y\(_{2}\)) are the two given given points on the circle. We have to find the equation of the circle for which the line segment PQ is a diameter.

Therefore, the mid-point of the line segment PQ is (\(\frac{x_{1} + x_{2}}{2}\), \(\frac{y_{1} + y_{2}}{2}\)).

Now see that the mid-point of the line segment PQ is the centre of the required circle.

The radius of the required circle

= \(\frac{1}{2}\)PQ

= \(\frac{1}{2}\)\(\mathrm{\sqrt{(x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}}}\)

We know that the equation of a circle with centre at (h, k) and radius equal to a, is (x - h)\(^{2}\) + (y - k)\(^{2}\) = a\(^{2}\).

Therefore, the equation of the required circle is

(x - \(\frac{x_{1} + x_{2}}{2}\))\(^{2}\) + (y - \(\frac{y_{1} + y_{2}}{2}\))\(^{2}\) = [\(\frac{1}{2}\)\(\mathrm{\sqrt{(x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}}}\) ]\(^{2}\)

⇒ (2x - x\(_{1}\) - x\(_{2}\))\(^{2}\) + (2y - y\(_{1}\) - y\(_{2}\))\(^{2}\) = (x\(_{1}\) - x\(_{2}\))\(^{2}\) + (y\(_{1}\) - y\(_{2}\))\(^{2}\)

⇒ (2x - x\(_{1}\) - x\(_{2}\))\(^{2}\) - (x\(_{1}\) - x\(_{2}\))\(^{2}\) + ( 2y - y\(_{1}\) - y\(_{2}\) )\(^{2}\) - (y\(_{1}\) - y\(_{2}\))\(^{2}\) = 0

⇒ (2x - x\(_{1}\) - x\(_{2}\) + x\(_{1}\) - x\(_{2}\))(2x - x\(_{1}\) - x\(_{2}\) - x\(_{1}\) + x\(_{2}\)) + (2y - y\(_{1}\) - y\(_{2}\) + y\(_{1}\) - y\(_{2}\))(2y - y\(_{1}\) - y\(_{2}\) + y\(_{2}\)) = 0

⇒ (2x - 2x\(_{2}\))(2x - 2x\(_{1}\)) + (2y - 2y\(_{2}\))(2y - 2y\(_{1}\)) = 0

⇒ (x - x\(_{2}\))(x - x\(_{1}\)) + (y - y\(_{2}\))(y - y\(_{1}\)) = 0

⇒ (x - x\(_{1}\))(x - x\(_{2}\)) + (y - y\(_{1}\))(y - y\(_{2}\)) = 0.

 

Second Method:

equation of a circle when the co-ordinates of end points of a diameter are given

Let the two given points be P (x\(_{1}\), y\(_{1}\)) and Q (x\(_{2}\), y\(_{2}\)). We have to find the equation of the circle for which the line segment PQ is a diameter.

Let M (x, y) be any point on the required circle. Join PM and MQ.

m\(_{1}\) = the slope of the straight line PM = \(\frac{y - y_{1}}{x - x_{1}}\)

m\(_{2}\) = the slope of the straight line PQ = \(\frac{y - y_{2}}{x - x_{2}}\).

Now, since the angle subtended at the point M in the semi-circle PMQ is a right angle.

Now, PQ is a diameter of the required circle.

Therefore, ∠PMQ = 1 rt. angle i.e., PM is perpendicular to QM

Therefore, \(\frac{y - y_{1}}{x - x_{1}}\) × \(\frac{y - y_{2}}{x - x_{2}}\) = -1

(y - y\(_{1}\))(y - y\(_{2}\)) = - (x - x\(_{1}\))(x - x\(_{2}\)

(x - x\(_{1}\))(x - x\(_{2}\)) + (y - y\(_{1}\))(y - y\(_{2}\)) = 0.

This is the required equation of the circle having (x\(_{1}\), y\(_{1}\)) and (x\(_{2}\), y\(_{2}\)) as the coordinates of the end points of a diameter.


Note: If the coordinates of the end points of a diameter of a circle given, we can also find the equation of the circle by finding the coordinates of the centre and radius. The centre is the mid-point of the diameter and radius is half of the length of the diameter.

 The Circle




11 and 12 Grade Math 

From Equation of a Circle when the Line Segment Joining Two Given Points is a Diameter to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. What are Parallel Lines in Geometry? | Two Parallel Lines | Examples

    Apr 19, 24 04:39 PM

    Examples of Parallel Lines
    In parallel lines when two lines do not intersect each other at any point even if they are extended to infinity. What are parallel lines in geometry? Two lines which do not intersect each other

    Read More

  2. Perpendicular Lines | What are Perpendicular Lines in Geometry?|Symbol

    Apr 19, 24 04:01 PM

    Perpendicular Lines
    In perpendicular lines when two intersecting lines a and b are said to be perpendicular to each other if one of the angles formed by them is a right angle. In other words, Set Square Set Square If two…

    Read More

  3. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 19, 24 01:50 PM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More

  4. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Apr 19, 24 01:22 PM

    Square - Polygon
    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More

  5. Simple Closed Curves | Types of Closed Curves | Collection of Curves

    Apr 18, 24 01:36 AM

    Closed Curves Examples
    In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

    Read More