Equation of a Circle when the Line Segment Joining Two Given Points is a Diameter

We will learn how to find the equation of the circle for which the line segment joining two given points is a diameter.

the equation of the circle drawn on the straight line joining two given points (x\(_{1}\), y\(_{1}\)) and (x\(_{2}\), y\(_{2}\)) as diameter is (x - x\(_{1}\))(x - x\(_{2}\))  + (y - y\(_{1}\))(y - y\(_{2}\)) = 0


First Method:

Let P (x\(_{1}\), y\(_{1}\)) and Q (x\(_{2}\), y\(_{2}\)) are the two given given points on the circle. We have to find the equation of the circle for which the line segment PQ is a diameter.

Therefore, the mid-point of the line segment PQ is (\(\frac{x_{1} + x_{2}}{2}\), \(\frac{y_{1} + y_{2}}{2}\)).

Now see that the mid-point of the line segment PQ is the centre of the required circle.

The radius of the required circle

= \(\frac{1}{2}\)PQ

= \(\frac{1}{2}\)\(\mathrm{\sqrt{(x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}}}\)

We know that the equation of a circle with centre at (h, k) and radius equal to a, is (x - h)\(^{2}\) + (y - k)\(^{2}\) = a\(^{2}\).

Therefore, the equation of the required circle is

(x - \(\frac{x_{1} + x_{2}}{2}\))\(^{2}\) + (y - \(\frac{y_{1} + y_{2}}{2}\))\(^{2}\) = [\(\frac{1}{2}\)\(\mathrm{\sqrt{(x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}}}\) ]\(^{2}\)

⇒ (2x - x\(_{1}\) - x\(_{2}\))\(^{2}\) + (2y - y\(_{1}\) - y\(_{2}\))\(^{2}\) = (x\(_{1}\) - x\(_{2}\))\(^{2}\) + (y\(_{1}\) - y\(_{2}\))\(^{2}\)

⇒ (2x - x\(_{1}\) - x\(_{2}\))\(^{2}\) - (x\(_{1}\) - x\(_{2}\))\(^{2}\) + ( 2y - y\(_{1}\) - y\(_{2}\) )\(^{2}\) - (y\(_{1}\) - y\(_{2}\))\(^{2}\) = 0

⇒ (2x - x\(_{1}\) - x\(_{2}\) + x\(_{1}\) - x\(_{2}\))(2x - x\(_{1}\) - x\(_{2}\) - x\(_{1}\) + x\(_{2}\)) + (2y - y\(_{1}\) - y\(_{2}\) + y\(_{1}\) - y\(_{2}\))(2y - y\(_{1}\) - y\(_{2}\) + y\(_{2}\)) = 0

⇒ (2x - 2x\(_{2}\))(2x - 2x\(_{1}\)) + (2y - 2y\(_{2}\))(2y - 2y\(_{1}\)) = 0

⇒ (x - x\(_{2}\))(x - x\(_{1}\)) + (y - y\(_{2}\))(y - y\(_{1}\)) = 0

⇒ (x - x\(_{1}\))(x - x\(_{2}\)) + (y - y\(_{1}\))(y - y\(_{2}\)) = 0.

 

Second Method:

equation of a circle when the co-ordinates of end points of a diameter are given

Let the two given points be P (x\(_{1}\), y\(_{1}\)) and Q (x\(_{2}\), y\(_{2}\)). We have to find the equation of the circle for which the line segment PQ is a diameter.

Let M (x, y) be any point on the required circle. Join PM and MQ.

m\(_{1}\) = the slope of the straight line PM = \(\frac{y - y_{1}}{x - x_{1}}\)

m\(_{2}\) = the slope of the straight line PQ = \(\frac{y - y_{2}}{x - x_{2}}\).

Now, since the angle subtended at the point M in the semi-circle PMQ is a right angle.

Now, PQ is a diameter of the required circle.

Therefore, ∠PMQ = 1 rt. angle i.e., PM is perpendicular to QM

Therefore, \(\frac{y - y_{1}}{x - x_{1}}\) × \(\frac{y - y_{2}}{x - x_{2}}\) = -1

(y - y\(_{1}\))(y - y\(_{2}\)) = - (x - x\(_{1}\))(x - x\(_{2}\)

(x - x\(_{1}\))(x - x\(_{2}\)) + (y - y\(_{1}\))(y - y\(_{2}\)) = 0.

This is the required equation of the circle having (x\(_{1}\), y\(_{1}\)) and (x\(_{2}\), y\(_{2}\)) as the coordinates of the end points of a diameter.


Note: If the coordinates of the end points of a diameter of a circle given, we can also find the equation of the circle by finding the coordinates of the centre and radius. The centre is the mid-point of the diameter and radius is half of the length of the diameter.

 The Circle




11 and 12 Grade Math 

From Equation of a Circle when the Line Segment Joining Two Given Points is a Diameter to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. What is a Triangle? | Types of Triangle | Scalene Triangle | Isosceles

    Jun 17, 24 11:22 PM

    What is a triangle
    A simple closed curve or a polygon formed by three line-segments (sides) is called a triangle. The above shown shapes are triangles. The symbol of a triangle is ∆. A triangle is a polygon with three s…

    Read More

  2. Interior and Exterior of an Angle | Interior Angle | Exterior Angle

    Jun 16, 24 05:20 PM

    Interior of an Angle
    Interior and exterior of an angle is explained here. The shaded portion between the arms BA and BC of the angle ABC can be extended indefinitely.

    Read More

  3. Angles | Magnitude of an Angle | Measure of an angle | Working Rules

    Jun 16, 24 04:12 PM

    Naming an Angle
    Angles are very important in our daily life so it’s very necessary to understand about angle. Two rays meeting at a common endpoint form an angle. In the adjoining figure, two rays AB and BC are calle

    Read More

  4. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Jun 16, 24 02:34 PM

    Square - Polygon
    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More

  5. Simple Closed Curves | Types of Closed Curves | Collection of Curves

    Jun 16, 24 12:31 PM

    Closed Curves Examples
    In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

    Read More