Position of a Point with Respect to a Circle

We will learn how to find the position of a point with respect to a circle.

A point (x\(_{1}\), y\(_{1}\)) lies outside, on or inside a circle S = x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 according as S\(_{1}\) > = or <0, where S\(_{1}\) = x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c.

Let P (x\(_{1}\), y\(_{1}\)) be a given point, C (-g , -f) be the centre and a be the radius of the given circle.

We need to find the position of the point P (x\(_{1}\), y\(_{1}\)) with respect to the circle S = x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0.

Now, CP = \(\mathrm{\sqrt{(x_{1} + g)^{2} + (y_{1} + f)^{2}}}\)

Therefore, the point

(i) P lies outside the circle x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 if CP > the radius of the circle.

i.e., \(\mathrm{\sqrt{(x_{1} + g)^{2} + (y_{1} + f)^{2}}}\) > \(\mathrm{\sqrt{g^{2} + f^{2} - c}}\)

⇒ \(\mathrm{(x_{1} + g)^{2} + (y_{1} + f)^{2}}\) > g\(^{2}\) + f\(^{2}\) - c

⇒ x\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + g\(^{2}\) + y\(_{1}\)\(^{2}\) + 2fy\(_{1}\) + f\(^{2}\) > g\(^{2}\) + f\(^{2}\) – c

⇒ x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c > 0

⇒ S\(_{1}\) > 0, where S\(_{1}\) = x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c.

 

(ii) P lies on the circle x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 if CP = 0.

i.e., \(\mathrm{\sqrt{(x_{1} + g)^{2} + (y_{1} + f)^{2}}}\) = \(\mathrm{\sqrt{g^{2} + f^{2} - c}}\)

⇒ \(\mathrm{(x_{1} + g)^{2} + (y_{1} + f)^{2}}\) = g\(^{2}\) + f\(^{2}\) - c

⇒ x\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + g\(^{2}\) + y\(_{1}\)\(^{2}\) + 2fy\(_{1}\) + f\(^{2}\) = g\(^{2}\) + f\(^{2}\) – c

⇒ x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c = 0

⇒ S\(_{1}\) = 0, where S\(_{1}\) = x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c.

 

(iii) P lies inside the circle x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 if CP < the radius of the circle.

i.e., \(\mathrm{\sqrt{(x_{1} + g)^{2} + (y_{1} + f)^{2}}}\) < \(\mathrm{\sqrt{g^{2} + f^{2} - c}}\)

⇒ \(\mathrm{(x_{1} + g)^{2} + (y_{1} + f)^{2}}\) < g\(^{2}\) + f\(^{2}\) - c

⇒ x\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + g\(^{2}\) + y\(_{1}\)\(^{2}\) + 2fy\(_{1}\) + f\(^{2}\) < g\(^{2}\) + f\(^{2}\) – c

⇒ x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c < 0

⇒ S\(_{1}\) < 0, where S\(_{1}\) = x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c.

Again, if the equation of the given circle be (x - h)\(^{2}\) + (y - k)\(^{2}\) = a\(^{2}\) then the coordinates of the centre C (h, k) and the radius of the circle = a

We need to find the position of the point P (x\(_{1}\), y\(_{1}\)) with respect to the circle (x - h)\(^{2}\) + (y - k)\(^{2}\)= a\(^{2}\).

Therefore, the point

(i) P lies outside the circle (x - h)\(^{2}\) + (y - k)\(^{2}\) = a\(^{2}\) if CP > the radius of the circle

i.e., CP > a

⇒ CP\(^{2}\) > a\(^{2}\)

⇒ (x\(_{1}\) - h)\(^{2}\) + (y\(_{1}\) - k)\(^{2}\) > a\(^{2}\)


(ii) P lies on the circle (x - h)\(^{2}\) + (y - k)\(^{2}\) = a\(^{2}\) if CP = the radius of the circle

i.e., CP = a

⇒ CP\(^{2}\) = a\(^{2}\)

⇒ (x\(_{1}\) - h)\(^{2}\) + (y\(_{1}\) - k)\(^{2}\) = a\(^{2}\)


(iii) P lies inside the circle (x - h)\(^{2}\) + (y - k)\(^{2}\) = a\(^{2}\) if CP < the radius of the circle

i.e., CP < a

⇒ CP\(^{2}\) < a\(^{2}\)

⇒ (x\(_{1}\) - h)\(^{2}\) + (y\(_{1}\) - k)\(^{2}\) < a\(^{2}\)

 

Solved examples to find the position of a point with respect to a given circle:

1. Prove that the point (1, - 1) lies within the circle x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 = 0, whereas the point (-1, 2) is outside the circle.

Solution:

We have x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 = 0 ⇒ S = 0, where S = x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4

For the point (1, -1), we have S\(_{1}\) = 1\(^{2}\) + (-1)\(^{2}\) - 4 ∙1 + 6 ∙ (- 1) + 4 = 1 + 1 - 4 - 6 + 4 = - 4 < 0

For the point (-1, 2), we have S\(_{1}\) = (- 1 )\(^{2}\) + 2\(^{2}\) - 4 ∙ (-1) +  6 ∙ 2 + 4 = 1 + 4 + 4 + 12 + 4 = 25 > 0

Therefore, the point (1, -1) lies inside the circle whereas (-1, 2) lies outside the circle.

 

2. Discuss the position of the points (0, 2) and (- 1, - 3) with respect to the circle x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 = 0.

Solution:

We have x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 = 0 ⇒ S = 0 where S = x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4

For the point (0, 2):

Putting x = 0 and y = 2 in the expression x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 we have,

S\(_{1}\) = 0\(^{2}\) + 2\(^{2}\) - 4 ∙ 0 + 6 ∙ 2 + 4 = 0 + 4 – 0 + 12 + 4 = 20, which is positive.

Therefore, the point (0, 2) lies within the given circle.

For the point (- 1, - 3):

Putting x = -1 and y = -3 in the expression x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 we have,

S\(_{1}\) = (- 1)\(^{2}\) + (- 3)\(^{2}\) - 4 ∙ (- 1) + 6 ∙ (- 3) + 4 = 1 + 9 + 4 - 18 + 4 = 18 - 18 = 0.

Therefore, the point (- 1, - 3) lies on the given circle.

 The Circle




11 and 12 Grade Math 

From Position of a Point with Respect to a Circle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Dividing 3-Digit by 1-Digit Number | Long Division |Worksheet Answer

    Apr 24, 24 03:46 PM

    Dividing 3-Digit by 1-Digit Number
    Dividing 3-Digit by 1-Digit Numbers are discussed here step-by-step. How to divide 3-digit numbers by single-digit numbers? Let us follow the examples to learn to divide 3-digit number by one-digit nu…

    Read More

  2. Symmetrical Shapes | One, Two, Three, Four & Many-line Symmetry

    Apr 24, 24 03:45 PM

    Symmetrical Figures
    Symmetrical shapes are discussed here in this topic. Any object or shape which can be cut in two equal halves in such a way that both the parts are exactly the same is called symmetrical. The line whi…

    Read More

  3. Mental Math on Geometrical Shapes | Geometry Worksheets| Answer

    Apr 24, 24 03:35 PM

    In mental math on geometrical shapes we will solve different type of problems on simple closed curves, polygons, basic geometrical concepts, perpendicular lines, parallel lines, circle, terms relates…

    Read More

  4. Circle Math | Terms Related to the Circle | Symbol of Circle O | Math

    Apr 24, 24 02:57 PM

    Circle using a Compass
    In circle math the terms related to the circle are discussed here. A circle is such a closed curve whose every point is equidistant from a fixed point called its centre. The symbol of circle is O. We…

    Read More

  5. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 24, 24 12:38 PM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More