General Form of the Equation of a Circle

We will discuss about the general form of the equation of a circle.

Prove that the equation x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 always represents a circle whose centre is (-g, -f) and radius = \(\sqrt{g^{2} + f^{2} - c}\), where g, f and c are three constants

 Conversely, a quadratic equation in x and y of the form x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 always represents the equation of a circle.

We know that the equation of the circle having centre at (h, k) and radius = r units is

(x - h)\(^{2}\) + (y - k)\(^{2}\) = r\(^{2}\)

⇒ x\(^{2}\) + y\(^{2}\) - 2hx - 2hy + h\(^{2}\) + k\(^{2}\) = r\(^{2}\)

⇒ x\(^{2}\) + y\(^{2}\) - 2hx - 2hy + h\(^{2}\) + k\(^{2}\) - r\(^{2}\) = 0

Compare the above equation x\(^{2}\) + y\(^{2}\) - 2hx - 2hy + h\(^{2}\) + k\(^{2}\) - r\(^{2}\) = 0 with x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 we get, h = -g, k = -f and h\(^{2}\) + k\(^{2}\) - r\(^{2}\) = c

Therefore the equation of any circle can be expressed in the form x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0.

Again, x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0

(x\(^{2}\) + 2gx + g\(^{2}\)) + (y\(^{2}\) + 2fy + f\(^{2}\)) = g\(^{2}\) + f\(^{2}\) - c

(x + g)\(^{2}\) + (y + f)\(^{2}\) = \((\sqrt{g^{2} + f^{2} - c})^{2}\)

{x - (-g) }\(^{2}\) + {y - (-f) }\(^{2}\) = \((\sqrt{g^{2} + f^{2} - c})^{2}\)

This is of the form (x - h)\(^{2}\) + (y - k)\(^{2}\) = r\(^{2}\) which represents a circle having centre at (- g, -f) and radius \(\sqrt{g^{2} + f^{2} - c}\).

Hence the given equation x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 represents a circle whose centre is (-g, -f) i.e, (-\(\frac{1}{2}\) coefficient of x, -\(\frac{1}{2}\) coefficient of y) and radius = \(\sqrt{g^{2} + f^{2} - c}\) = \(\sqrt{(\frac{1}{2}\textrm{coefficient of x})^{2} + (\frac{1}{2}\textrm{coefficient of y})^{2} - \textrm{constant term}}\)


Note:

(i) The equation x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 represents a circle of radius = \(\sqrt{g^{2} + f^{2} - c}\).

(ii) If g\(^{2}\) + f\(^{2}\) - c > 0, then the radius of the circle is real and hence the equation x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 represents a real circle.

(iii) If g\(^{2}\) + f\(^{2}\) - c = 0 then the radius of the circle becomes zero. In this case, the circle reduces to the point (-g, -f). Such a circle is known as a point circle. In other words, the equation x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 represents a point circle.

(iv) If g\(^{2}\) + f\(^{2}\) - c < 0, the radius of the circle \(\sqrt{g^{2} + f^{2} - c}\) becomes imaginary but the circle is real. Such a circle is called an imaginary circle. In other words, equation x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 does not represent any real circle as it is not possible to draw such a circle.

 The Circle




11 and 12 Grade Math 

From General Form of the Equation of a Circle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 11, 24 09:08 AM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More