General Form of the Equation of a Circle

We will discuss about the general form of the equation of a circle.

Prove that the equation x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 always represents a circle whose centre is (-g, -f) and radius = \(\sqrt{g^{2} + f^{2} - c}\), where g, f and c are three constants

 Conversely, a quadratic equation in x and y of the form x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 always represents the equation of a circle.

We know that the equation of the circle having centre at (h, k) and radius = r units is

(x - h)\(^{2}\) + (y - k)\(^{2}\) = r\(^{2}\)

⇒ x\(^{2}\) + y\(^{2}\) - 2hx - 2hy + h\(^{2}\) + k\(^{2}\) = r\(^{2}\)

⇒ x\(^{2}\) + y\(^{2}\) - 2hx - 2hy + h\(^{2}\) + k\(^{2}\) - r\(^{2}\) = 0

Compare the above equation x\(^{2}\) + y\(^{2}\) - 2hx - 2hy + h\(^{2}\) + k\(^{2}\) - r\(^{2}\) = 0 with x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 we get, h = -g, k = -f and h\(^{2}\) + k\(^{2}\) - r\(^{2}\) = c

Therefore the equation of any circle can be expressed in the form x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0.

Again, x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0

(x\(^{2}\) + 2gx + g\(^{2}\)) + (y\(^{2}\) + 2fy + f\(^{2}\)) = g\(^{2}\) + f\(^{2}\) - c

(x + g)\(^{2}\) + (y + f)\(^{2}\) = \((\sqrt{g^{2} + f^{2} - c})^{2}\)

{x - (-g) }\(^{2}\) + {y - (-f) }\(^{2}\) = \((\sqrt{g^{2} + f^{2} - c})^{2}\)

This is of the form (x - h)\(^{2}\) + (y - k)\(^{2}\) = r\(^{2}\) which represents a circle having centre at (- g, -f) and radius \(\sqrt{g^{2} + f^{2} - c}\).

Hence the given equation x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 represents a circle whose centre is (-g, -f) i.e, (-\(\frac{1}{2}\) coefficient of x, -\(\frac{1}{2}\) coefficient of y) and radius = \(\sqrt{g^{2} + f^{2} - c}\) = \(\sqrt{(\frac{1}{2}\textrm{coefficient of x})^{2} + (\frac{1}{2}\textrm{coefficient of y})^{2} - \textrm{constant term}}\)


Note:

(i) The equation x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 represents a circle of radius = \(\sqrt{g^{2} + f^{2} - c}\).

(ii) If g\(^{2}\) + f\(^{2}\) - c > 0, then the radius of the circle is real and hence the equation x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 represents a real circle.

(iii) If g\(^{2}\) + f\(^{2}\) - c = 0 then the radius of the circle becomes zero. In this case, the circle reduces to the point (-g, -f). Such a circle is known as a point circle. In other words, the equation x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 represents a point circle.

(iv) If g\(^{2}\) + f\(^{2}\) - c < 0, the radius of the circle \(\sqrt{g^{2} + f^{2} - c}\) becomes imaginary but the circle is real. Such a circle is called an imaginary circle. In other words, equation x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 does not represent any real circle as it is not possible to draw such a circle.

 The Circle




11 and 12 Grade Math 

From General Form of the Equation of a Circle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Decimal Place Value Chart |Tenths Place |Hundredths Place |Thousandths

    Jul 19, 24 03:26 PM

    Decimal place value chart
    Decimal place value chart are discussed here: The first place after the decimal is got by dividing the number by 10; it is called the tenths place.

    Read More

  2. Definition of Decimal Numbers | Decimal Part | Decimal Point |Examples

    Jul 19, 24 11:13 AM

    Decimal Numbers
    Definition of decimal numbers: We have learnt that the decimals are an extension of our number system. We also know that decimals can be considered as fractions whose denominators are 10, 100, 1000

    Read More

  3. Addition and Subtraction of Fractions | Solved Examples | Worksheet

    Jul 19, 24 02:00 AM

    Addition and subtraction of fractions are discussed here with examples. To add or subtract two or more fractions, proceed as under: (i) Convert the mixed fractions (if any.) or natural numbers

    Read More

  4. Fractions in Descending Order |Arranging Fractions an Descending Order

    Jul 19, 24 02:00 AM

    We will discuss here how to arrange the fractions in descending order. Solved examples for arranging in descending order: 1. Arrange the following fractions 5/6, 7/10, 11/20 in descending order. First…

    Read More

  5. Fractions in Ascending Order | Arranging Fractions | Worksheet |Answer

    Jul 19, 24 01:59 AM

    Comparison Fractions
    We will discuss here how to arrange the fractions in ascending order. Solved examples for arranging in ascending order: 1. Arrange the following fractions 5/6, 8/9, 2/3 in ascending order. First we fi…

    Read More