General Form of the Equation of a Circle

We will discuss about the general form of the equation of a circle.

Prove that the equation x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 always represents a circle whose centre is (-g, -f) and radius = \(\sqrt{g^{2} + f^{2} - c}\), where g, f and c are three constants

 Conversely, a quadratic equation in x and y of the form x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 always represents the equation of a circle.

We know that the equation of the circle having centre at (h, k) and radius = r units is

(x - h)\(^{2}\) + (y - k)\(^{2}\) = r\(^{2}\)

⇒ x\(^{2}\) + y\(^{2}\) - 2hx - 2hy + h\(^{2}\) + k\(^{2}\) = r\(^{2}\)

⇒ x\(^{2}\) + y\(^{2}\) - 2hx - 2hy + h\(^{2}\) + k\(^{2}\) - r\(^{2}\) = 0

Compare the above equation x\(^{2}\) + y\(^{2}\) - 2hx - 2hy + h\(^{2}\) + k\(^{2}\) - r\(^{2}\) = 0 with x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 we get, h = -g, k = -f and h\(^{2}\) + k\(^{2}\) - r\(^{2}\) = c

Therefore the equation of any circle can be expressed in the form x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0.

Again, x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0

(x\(^{2}\) + 2gx + g\(^{2}\)) + (y\(^{2}\) + 2fy + f\(^{2}\)) = g\(^{2}\) + f\(^{2}\) - c

(x + g)\(^{2}\) + (y + f)\(^{2}\) = \((\sqrt{g^{2} + f^{2} - c})^{2}\)

{x - (-g) }\(^{2}\) + {y - (-f) }\(^{2}\) = \((\sqrt{g^{2} + f^{2} - c})^{2}\)

This is of the form (x - h)\(^{2}\) + (y - k)\(^{2}\) = r\(^{2}\) which represents a circle having centre at (- g, -f) and radius \(\sqrt{g^{2} + f^{2} - c}\).

Hence the given equation x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 represents a circle whose centre is (-g, -f) i.e, (-\(\frac{1}{2}\) coefficient of x, -\(\frac{1}{2}\) coefficient of y) and radius = \(\sqrt{g^{2} + f^{2} - c}\) = \(\sqrt{(\frac{1}{2}\textrm{coefficient of x})^{2} + (\frac{1}{2}\textrm{coefficient of y})^{2} - \textrm{constant term}}\)


Note:

(i) The equation x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 represents a circle of radius = \(\sqrt{g^{2} + f^{2} - c}\).

(ii) If g\(^{2}\) + f\(^{2}\) - c > 0, then the radius of the circle is real and hence the equation x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 represents a real circle.

(iii) If g\(^{2}\) + f\(^{2}\) - c = 0 then the radius of the circle becomes zero. In this case, the circle reduces to the point (-g, -f). Such a circle is known as a point circle. In other words, the equation x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 represents a point circle.

(iv) If g\(^{2}\) + f\(^{2}\) - c < 0, the radius of the circle \(\sqrt{g^{2} + f^{2} - c}\) becomes imaginary but the circle is real. Such a circle is called an imaginary circle. In other words, equation x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 does not represent any real circle as it is not possible to draw such a circle.

 The Circle




11 and 12 Grade Math 

From General Form of the Equation of a Circle to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fraction in Lowest Terms |Reducing Fractions|Fraction in Simplest Form

    Feb 28, 24 04:07 PM

    Fraction 8/16
    There are two methods to reduce a given fraction to its simplest form, viz., H.C.F. Method and Prime Factorization Method. If numerator and denominator of a fraction have no common factor other than 1…

    Read More

  2. Equivalent Fractions | Fractions |Reduced to the Lowest Term |Examples

    Feb 28, 24 01:43 PM

    Equivalent Fractions
    The fractions having the same value are called equivalent fractions. Their numerator and denominator can be different but, they represent the same part of a whole. We can see the shade portion with re…

    Read More

  3. Fraction as a Part of Collection | Pictures of Fraction | Fractional

    Feb 27, 24 02:43 PM

    Pictures of Fraction
    How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

    Read More

  4. Fraction of a Whole Numbers | Fractional Number |Examples with Picture

    Feb 24, 24 04:11 PM

    A Collection of Apples
    Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…

    Read More

  5. Identification of the Parts of a Fraction | Fractional Numbers | Parts

    Feb 24, 24 04:10 PM

    Fractional Parts
    We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

    Read More