Circle Passing Through Three Given Points

We will learn how to find the equation of a circle passing through three given points.

Let P (x\(_{1}\), y\(_{1}\)), Q (x\(_{2}\), y\(_{2}\)) and R (x\(_{3}\), y\(_{3}\)) are the three given points.

We have to find the equation of the circle passing through the points P, Q and R.

Let the equation of the general form of the required circle be x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 ……………. (i)

According to the problem, the above equation of the circle passes through the points P (x1, y1), Q (x2, y2) and R (x3, y3). Therefore,

x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c = 0 ……………. (ii)

x\(_{2}\)\(^{2}\) + y2\(^{2}\) + 2gx\(_{2}\) + 2fy\(_{2}\) + c = 0 ……………. (iii)

and  x\(_{3}\)\(^{2}\) + y\(_{3}\)\(^{2}\) + 2gx\(_{3}\) + 2fy\(_{3}\) + c = 0 ……………. (iv)

Form the above there equations (ii), (iii) and (iv) find the value of g, f and c. Then substituting the values of g, f and c in (i) we can find the required equation of the circle.

 

Solved examples to find the equation of the circle passing through three given points:

1. Find the equation of the circle passes through three points (1, 0), (-1, 0) and (0, 1).

Solution:

Let the equation of the general form of the required circle be x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 ……………. (i)

According to the problem, the above equation of the circle passes through the points (1, 0), (-1, 0) and (0, 1). Therefore,

1 + 2g + c = 0 ……………. (ii)

1 - 2g + c = 0  ……………. (iii)

1 + 2f + c = 0  ……………. (iv)

Subtracting (iii) form (i), we get 4g = 0 ⇒ g = 0.

Putting g = 0 in (ii), we obtain c = -1. Now putting c = -1 in (iv), we get f = 0.

Substituting the values of g, f and c in (i), we obtain the equation of the required circle as x\(^{2}\) + y\(^{2}\) = 1.

 

2. Find the equation of the circle passes through three points (1, - 6), (2, 1) and (5, 2). Also find the co-ordinate of its centre and the length of the radius.

Solution:     

Let the equation of the required circle be

x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 ……………….(i)

According to the problem, the above equation passes through the coordinate points (1, - 6), (2, 1) and (5, 2).

Therefore, substituting the coordinates of three points (1, - 6), (2, 1) and (5, 2) successively in equation (i) we get,

For the point (1, - 6): 1 + 36 + 2g - 12f + c = 0         

⇒ 2g - 12f + c =  -37 ……………….(ii)

For the point (2, 1):  4 + 1 + 4g + 2f + c  = 0   

⇒ 4g + 2f + c =- 5 ……………….(iii)

For the point (5, 2):  25 + 4 + 10g + 4f + c = 0  

⇒ 10g + 4f + c = -29 ……………….(iv)

Subtracting (ii) from (iii) we get,

2g + 14f = 32

⇒ g + 7f = 16 ……………….(v)

Again, Subtracting (ii) form (iv) we get,

8g + 16f = 8      

⇒ g + 2f = 1 ……………….(vi)

Now, solving equations (v) and (vi) we get, g = - 5 and f = 3.

Putting the values of g and f in (iii) we get, c = 9.

Therefore, the equation of the required circle is x\(^{2}\) + y\(^{2}\) - 10x + 6y + 9 = 0

Thus, the co-ordinates of its centre are (- g, - f) = (5, - 3) and radius = \(\mathrm{\sqrt{g^{2} + f^{2} - c}}\) = \(\mathrm{\sqrt{25 + 9 - 9}}\)
 = √25 = 5 units.

 The Circle




11 and 12 Grade Math 

From Circle Passing Through Three Given Points to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Addition of Decimals | How to Add Decimals? | Adding Decimals|Addition

    Apr 24, 25 01:45 AM

    Addition of Decimals
    We will discuss here about the addition of decimals. Decimals are added in the same way as we add ordinary numbers. We arrange the digits in columns and then add as required. Let us consider some

    Read More

  2. Addition of Like Fractions | Examples | Videos | Worksheet | Fractions

    Apr 23, 25 09:23 AM

    Adding Like Fractions
    To add two or more like fractions we simplify add their numerators. The denominator remains same. Thus, to add the fractions with the same denominator, we simply add their numerators and write the com…

    Read More

  3. Subtraction | How to Subtract 2-digit, 3-digit, 4-digit Numbers?|Steps

    Apr 23, 25 12:41 AM

    Subtraction Example
    The answer of a subtraction sum is called DIFFERENCE. How to subtract 2-digit numbers? Steps are shown to subtract 2-digit numbers.

    Read More

  4. Subtraction of 4-Digit Numbers | Subtract Numbers with Four Digit

    Apr 23, 25 12:38 AM

    Properties of Subtraction of 4-Digit Numbers
    We will learn about the subtraction of 4-digit numbers (without borrowing and with borrowing). We know when one number is subtracted from another number the result obtained is called the difference.

    Read More

  5. Subtraction with Regrouping | 4-Digit, 5-Digit and 6-Digit Subtraction

    Apr 23, 25 12:34 AM

     Subtraction of 5-Digit Numbers with Regrouping
    We will learn subtraction 4-digit, 5-digit and 6-digit numbers with regrouping. Subtraction of 4-digit numbers can be done in the same way as we do subtraction of smaller numbers. We first arrange the…

    Read More