Equation of the Common Chord of Two Circles

We will learn how to find the equation of the common chord of two circles.

Let us assume that the equations of the two given intersecting circles be x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\) = 0 ……………..(i) and x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\) = 0 ……………..(ii), intersect at P (x\(_{1}\), y\(_{1}\)) and Q (x\(_{2}\), y\(_{2}\)).

Now we need to find the equation of the common chord PQ of the given circles.

Now we observe from the above figure that the point P (x\(_{1}\), y\(_{1}\)) lies on both the given equations. 

Therefore, we get,

x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2g\(_{1}\)x\(_{1}\) + 2f\(_{1}\)y\(_{1}\) + c\(_{1}\) = 0 ……………..(iii)    


x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2g\(_{2}\)x\(_{1}\) + 2f\(_{2}\)y\(_{1}\) + c\(_{2}\) = 0 ……………..(iv)

Now subtracting the equation (4) from equation (3) we get,

2(g\(_{1}\) -  g\(_{2}\))x\(_{1}\) + 2 (f\(_{1}\) - f\(_{2}\))y\(_{1}\) + C\(_{1}\) - C\(_{2}\) = 0 ……………..(v)

Again, we observe from the above figure that the point Q (x2, y2) lies on both the given equations. Therefore, we get,


x\(_{2}\)\(^{2}\) + y\(_{2}\)\(^{2}\) + 2g\(_{1}\)x\(_{2}\) + 2f\(_{1}\)y\(_{2}\) + c\(_{1}\) = 0 ……………..(vi)


x\(_{2}\)\(^{2}\) + y\(_{2}\)\(^{2}\) + 2g\(_{2}\)x\(_{2}\) + 2f\(_{2}\)y\(_{2}\) + c\(_{2}\) = 0 ……………..(vii)

Now subtracting the equation (b) from equation (a) we get,

2(g\(_{1}\) -  g\(_{2}\))x\(_{2}\) + 2 (f\(_{1}\) - f\(_{2}\))y\(_{2}\) + C\(_{1}\) - C\(_{2}\) = 0 ……………..(viii)

From conditions (v) and (viii) it is evident that the points P (x\(_{1}\), y\(_{1}\)) and Q (x\(_{2}\), y\(_{2}\)) lie on 2(g\(_{1}\) -  g\(_{2}\))x + 2 (f\(_{1}\) - f\(_{2}\))y + C\(_{1}\) - C\(_{2}\) = 0, which is a linear equation in x and y.

It represents the equation of the common chord PQ of the given two intersecting circles.

 

Note: While finding the equation of the common chord of two given intersecting circles first we need to express each equation to its general form i.e., x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 then subtract one equation of the circle from the other equation of the circle.


Solve example to find the equation of the common chord of two given circles:

1. Determine the equation of the common chord of the two intersecting circles x\(^{2}\) + y\(^{2}\) - 4x - 2y - 31 = 0 and 2x\(^{2}\) + 2y\(^{2}\) - 6x + 8y - 35 = 0 and prove that the common chord is perpendicular to the line joining the centers of the two circles.

Solution:

The given two intersecting circles are

x\(^{2}\) + y\(^{2}\) - 4x - 2y - 31 = 0 ……………..(i) and

2x\(^{2}\) + 2y\(^{2}\) - 6x + 8y - 35 = 0              

⇒ x\(^{2}\) + y\(^{2}\) - 3x + 4y - \(\frac{35}{2}\) ……………..(ii)

Now, to find the equation of the common chord of two intersecting circles we will subtract the equation (ii) from the equation (i).

Therefore, the equation of the common chord is

x\(^{2}\) + y\(^{2}\) - 4x - 2y - 31 - (x\(^{2}\) + y\(^{2}\) - 3x + 4y - \(\frac{35}{2}\)) = 0    

⇒ - x - 6y - \(\frac{27}{2}\) = 0            

2x + 12y + 27  = 0, which is the required equation.

The slope of the common chord 2x + 12y + 27 = 0 is (m\(_{1}\)) = -\(\frac{1}{6}\).

Centre of the circle x\(^{2}\) + y\(^{2}\) - 4x - 2y - 31 = 0 is (2, 1).

Centre of the circle 2x\(^{2}\) + 2y\(^{2}\) - 6x + 8y - 35 = 0 is (\(\frac{3}{2}\), -2).

The slope of the line joining the centres of the circles (1) and (2) is (m\(_{2}\)) = \(\frac{-2 - 1}{\frac{3}{2} - 2}\) = 6

Now m\(_{1}\) ∙ m\(_{2}\) = -\(\frac{1}{6}\) ∙ 6 = - 1

Therefore, we see that the slope of the common chord and slope of the line joining the centres of the circles (1) and (2) are negative reciprocals of each other i.e., m\(_{1}\) = -\(\frac{1}{m_{2}}\) i.e., m\(_{1}\) ∙ m\(_{2}\) = -1.

Therefore, the common chord of the given circles is perpendicular to the line joining the centers of the two circles.              Proved

 The Circle




11 and 12 Grade Math 

From Equation of the Common Chord of Two Circles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Perimeter of a Square | How to Find the Perimeter of Square? |Examples

    Apr 25, 24 05:34 PM

    Perimeter of a Square
    We will discuss here how to find the perimeter of a square. Perimeter of a square is the total length (distance) of the boundary of a square. We know that all the sides of a square are equal. Perimete…

    Read More

  2. Perimeter of a Triangle | Perimeter of a Triangle Formula | Examples

    Apr 25, 24 05:13 PM

    Perimeter of a Triangle
    We will discuss here how to find the perimeter of a triangle. We know perimeter of a triangle is the total length (distance) of the boundary of a triangle. Perimeter of a triangle is the sum of length…

    Read More

  3. Perimeter of a Rectangle | How to Find the Perimeter of a Rectangle?

    Apr 25, 24 03:45 PM

    Perimeter of a Rectangle
    We will discuss here how to find the perimeter of a rectangle. We know perimeter of a rectangle is the total length (distance) of the boundary of a rectangle. ABCD is a rectangle. We know that the opp…

    Read More

  4. Dividing 3-Digit by 1-Digit Number | Long Division |Worksheet Answer

    Apr 24, 24 03:46 PM

    Dividing 3-Digit by 1-Digit Number
    Dividing 3-Digit by 1-Digit Numbers are discussed here step-by-step. How to divide 3-digit numbers by single-digit numbers? Let us follow the examples to learn to divide 3-digit number by one-digit nu…

    Read More

  5. Symmetrical Shapes | One, Two, Three, Four & Many-line Symmetry

    Apr 24, 24 03:45 PM

    Symmetrical Figures
    Symmetrical shapes are discussed here in this topic. Any object or shape which can be cut in two equal halves in such a way that both the parts are exactly the same is called symmetrical. The line whi…

    Read More