Subscribe to our YouTube channel for the latest videos, updates, and tips.


Equation of the Common Chord of Two Circles

We will learn how to find the equation of the common chord of two circles.

Let us assume that the equations of the two given intersecting circles be x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\) = 0 ……………..(i) and x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\) = 0 ……………..(ii), intersect at P (x\(_{1}\), y\(_{1}\)) and Q (x\(_{2}\), y\(_{2}\)).

Now we need to find the equation of the common chord PQ of the given circles.

Now we observe from the above figure that the point P (x\(_{1}\), y\(_{1}\)) lies on both the given equations. 

Therefore, we get,

x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2g\(_{1}\)x\(_{1}\) + 2f\(_{1}\)y\(_{1}\) + c\(_{1}\) = 0 ……………..(iii)    


x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2g\(_{2}\)x\(_{1}\) + 2f\(_{2}\)y\(_{1}\) + c\(_{2}\) = 0 ……………..(iv)

Now subtracting the equation (4) from equation (3) we get,

2(g\(_{1}\) -  g\(_{2}\))x\(_{1}\) + 2 (f\(_{1}\) - f\(_{2}\))y\(_{1}\) + C\(_{1}\) - C\(_{2}\) = 0 ……………..(v)

Again, we observe from the above figure that the point Q (x2, y2) lies on both the given equations. Therefore, we get,


x\(_{2}\)\(^{2}\) + y\(_{2}\)\(^{2}\) + 2g\(_{1}\)x\(_{2}\) + 2f\(_{1}\)y\(_{2}\) + c\(_{1}\) = 0 ……………..(vi)


x\(_{2}\)\(^{2}\) + y\(_{2}\)\(^{2}\) + 2g\(_{2}\)x\(_{2}\) + 2f\(_{2}\)y\(_{2}\) + c\(_{2}\) = 0 ……………..(vii)

Now subtracting the equation (b) from equation (a) we get,

2(g\(_{1}\) -  g\(_{2}\))x\(_{2}\) + 2 (f\(_{1}\) - f\(_{2}\))y\(_{2}\) + C\(_{1}\) - C\(_{2}\) = 0 ……………..(viii)

From conditions (v) and (viii) it is evident that the points P (x\(_{1}\), y\(_{1}\)) and Q (x\(_{2}\), y\(_{2}\)) lie on 2(g\(_{1}\) -  g\(_{2}\))x + 2 (f\(_{1}\) - f\(_{2}\))y + C\(_{1}\) - C\(_{2}\) = 0, which is a linear equation in x and y.

It represents the equation of the common chord PQ of the given two intersecting circles.

 

Note: While finding the equation of the common chord of two given intersecting circles first we need to express each equation to its general form i.e., x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 then subtract one equation of the circle from the other equation of the circle.


Solve example to find the equation of the common chord of two given circles:

1. Determine the equation of the common chord of the two intersecting circles x\(^{2}\) + y\(^{2}\) - 4x - 2y - 31 = 0 and 2x\(^{2}\) + 2y\(^{2}\) - 6x + 8y - 35 = 0 and prove that the common chord is perpendicular to the line joining the centers of the two circles.

Solution:

The given two intersecting circles are

x\(^{2}\) + y\(^{2}\) - 4x - 2y - 31 = 0 ……………..(i) and

2x\(^{2}\) + 2y\(^{2}\) - 6x + 8y - 35 = 0              

⇒ x\(^{2}\) + y\(^{2}\) - 3x + 4y - \(\frac{35}{2}\) ……………..(ii)

Now, to find the equation of the common chord of two intersecting circles we will subtract the equation (ii) from the equation (i).

Therefore, the equation of the common chord is

x\(^{2}\) + y\(^{2}\) - 4x - 2y - 31 - (x\(^{2}\) + y\(^{2}\) - 3x + 4y - \(\frac{35}{2}\)) = 0    

⇒ - x - 6y - \(\frac{27}{2}\) = 0            

2x + 12y + 27  = 0, which is the required equation.

The slope of the common chord 2x + 12y + 27 = 0 is (m\(_{1}\)) = -\(\frac{1}{6}\).

Centre of the circle x\(^{2}\) + y\(^{2}\) - 4x - 2y - 31 = 0 is (2, 1).

Centre of the circle 2x\(^{2}\) + 2y\(^{2}\) - 6x + 8y - 35 = 0 is (\(\frac{3}{2}\), -2).

The slope of the line joining the centres of the circles (1) and (2) is (m\(_{2}\)) = \(\frac{-2 - 1}{\frac{3}{2} - 2}\) = 6

Now m\(_{1}\) ∙ m\(_{2}\) = -\(\frac{1}{6}\) ∙ 6 = - 1

Therefore, we see that the slope of the common chord and slope of the line joining the centres of the circles (1) and (2) are negative reciprocals of each other i.e., m\(_{1}\) = -\(\frac{1}{m_{2}}\) i.e., m\(_{1}\) ∙ m\(_{2}\) = -1.

Therefore, the common chord of the given circles is perpendicular to the line joining the centers of the two circles.              Proved

 The Circle




11 and 12 Grade Math 

From Equation of the Common Chord of Two Circles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Rounding Decimals | Questions Related to Round a Decimal

    May 14, 25 04:21 PM

    The worksheet on rounding decimals would be really good for the students to practice huge number of questions related to round a decimal. This worksheet include questions related

    Read More

  2. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 14, 25 03:01 PM

    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More

  3. Worksheet on Rounding Off Number | Rounding off Number | Nearest 10

    May 14, 25 12:50 PM

    In worksheet on rounding off number we will solve 10 different types of problems. 1. Round off to nearest 10 each of the following numbers: (a) 14 (b) 57 (c) 61 (d) 819 (e) 7729 2. Round off to

    Read More

  4. Rounding Off to the Nearest Whole Number | Nearest 10, 100, and 1000

    May 13, 25 03:43 PM

    Nearest Ten
    Here we will learn how to rounding off to the nearest whole number?

    Read More

  5. Conversion of Improper Fractions into Mixed Fractions |Solved Examples

    May 12, 25 04:52 AM

    Conversion of Improper Fractions into Mixed Fractions
    In conversion of improper fractions into mixed fractions, we follow the following steps: Step I: Obtain the improper fraction. Step II: Divide the numerator by the denominator and obtain the quotient…

    Read More