Circle Through the Intersection of Two Circles

We will learn how to find the equation of a circle through the intersection of two given circles.

The equation of a family of circles passing through the intersection of the circles P\(_{1}\) = x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\) = 0 and P\(_{2}\) = x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\) = 0 is P\(_{1}\) + λP\(_{2}\) = 0 i.e., (x\(^{2}\) + y\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c\(_{1}\)) + λ(x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\)) = 0, where λ (≠ -1) in an arbitrary real number.

Proof:

Let the equations of the given circles be 

P\(_{1}\) = x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\) = 0 ………………………..(i) and

P\(_{2}\) = x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\) ………………………..(ii)

Circle Through the Intersection of Two CirclesCircle Through the Intersection of Two Circles

Consider the equation P\(_{1}\) + λP\(_{2}\) = 0 i.e., the equation of any curve through the points of intersection of the circles (1) and (2) is

(x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\)) + λ(x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\)) = 0 ………………………..(iii)

Clearly, it represents a circle for all values of λ except λ = -1. For λ = -1 (iii) becomes a first degree equation in x, y which represents a line. In order to prove that it passes through the points of intersection of the two given circles, it is sufficient to show that their points of intersection satisfy (iii).

Let (x\(_{1}\), y\(_{1}\)) be a point of intersection of the given circles.

Then,
\(\mathrm{x_{1}^{2} + y_{1}^{2} + 2g_{1}x_{1} + 2f_{1}y_{1} + c_{1}}\) and \(\mathrm{x_{1}^{2} + y_{1}^{2} + 2g_{2}x_{1} + 2f_{2}y_{1} + c_{2}}\)

⇒ (\(\mathrm{x_{1}^{2} + y_{1}^{2} + 2g_{1}x_{1} + 2f_{1}y_{1} + c_{1}}\)) +  λ(\(\mathrm{x_{1}^{2} + y_{1}^{2} + 2g_{2}x_{1} + 2f_{2}y_{1} + c_{2}}\)) = 0 + λ0 = 0

⇒ (x\(_{1}\), y\(_{1}\)) lies on (iii).

Similarly, it can be proved that the second point of intersection of the given circles also satisfy (i)

Hence, (iii) gives the family of circles passing through the intersection of the given circles.

In other words, the equation of any curve through the points of intersection of the circles (i) and (ii) is
(x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\)) + λ(x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\))………………………..(iv)

⇒ (1 + λ)(x\(^{2}\) + y\(^{2}\)) + 2(g\(_{1}\) + g\(_{2}\)λ)x + 2(f\(_{1}\) + f\(_{2}\)λ)y + c\(_{1}\) + λc\(_{2}\) = 0

⇒ x\(^{2}\) + y\(^{2}\) + 2 ∙ \(\mathrm{\frac{g_{1} + g_{2}λ}{1 + λ}}\) x + 2 ∙ \(\mathrm{\frac{f_{1} + f_{2}λ}{1 + λ}}\)y + \(\mathrm{\frac{c_{1} + c_{2}λ}{1 + λ}}\) = 0 ………………………..(v)   

If λ ≠ - 1, then equation (v) will represent the equation of a circle. Therefore, the equation (iv) represents the family of circles through the points of intersection of the circles (1) and (2). 


Solved examples to find the equations of a circle through the points of intersection of two given circles: 

1. Find the equation of the circle through the intersection of the circles x\(^{2}\) + y\(^{2}\) - 8x - 2y + 7 = 0 and x\(^{2}\) + y\(^{2}\) - 4x + 10y + 8 = 0 and passes through the point (-1, -2).

Solution:

The equation of any circles passing through the intersection of the circles S\(_{1}\) = x\(^{2}\) + y\(^{2}\) - 8x - 2y + 7 = 0 and S\(_{2}\) = x\(^{2}\) + y\(^{2}\) - 4x + 10y + 8 = 0 is S\(_{1}\) + λS\(_{2}\) = 0 

Therefore, the equation of the required circle is (x\(^{2}\) + y\(^{2}\) - 8x - 2y + 7) + λ(x\(^{2}\) + y\(^{2}\) - 4x + 10y + 8) = 0, where λ (≠ -1) in an arbitrary real number

This circle passes through the point (-1, -2), therefore, 
 (1 + λ) + 4(1 + λ) + 4(2 + λ) + 4(1 - 5λ) + 7 + 8λ = 0

⇒ 24 - 3λ = 0

⇒ λ = 8

Now putting the value of λ = 8 in the equation (x\(^{2}\) + y\(^{2}\) - 8x - 2y + 7) + λ(x\(^{2}\) + y\(^{2}\) - 4x + 10y + 8) = 0 we get the required equation as 9x\(^{2}\) + 9y\(^{2}\) – 40x + 78y + 71 = 0.


2. Find the equation of the circle through the intersection of the circles x\(^{2}\) + y\(^{2}\) - x + 7y - 3 = 0 and x\(^{2}\) + y\(^{2}\) - 5x - y + 1 = 0, having its centre on the line x + y = 0. 

Solution:

x\(^{2}\) + y\(^{2}\) - x + 7y - 3 + λ(x\(^{2}\) + y\(^{2}\) - 5x - y + 1) = 0, (λ ≠1)

⇒(1 + λ) (x\(^{2}\) + y\(^{2}\)) - (1 +  5λ)x + (7 - λ)y - 3 + λ = 0

⇒ x\(^{2}\) + y\(^{2}\) - \(\frac{1 + 5λ}{1 + λ}\)x - \(\frac{λ - 7}{1 + λ}\)y + \(\frac{λ - 3}{1 + λ}\) = 0 …………….(i)

Clearly, the co-ordinates of the centre of the circle (i) are [\(\frac{1 + 5λ}{2(1 + λ)}\), \(\frac{λ - 7}{2(1 + λ)}\)] By question, this point lies on the line x + y = 0. 

Therefore, \(\frac{1 + 5λ}{2(1 + λ)}\) + \(\frac{λ - 7}{2(1 + λ)}\) = 0 

⇒1 + 5λ + λ - 7 = 0 

⇒ 6λ =  6

⇒ λ = 1

Therefore, the equation of the required circle is 2(x\(^{2}\) + y\(^{2}\)) - 6x + 6y - 2 = 0, [putting λ = 1 in (1)] 

⇒ x\(^{2}\) + y\(^{2}\) - 3x + 3y - 1 = 0. 

 The Circle




11 and 12 Grade Math 

From Circle through the Intersection of Two Circles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Word Problems on Area and Perimeter | Free Worksheet with Answers

    Jul 26, 24 04:58 PM

    word problems on area and perimeter

    Read More

  2. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 26, 24 04:37 PM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  3. Perimeter and Area of Irregular Figures | Solved Example Problems

    Jul 26, 24 02:20 PM

    Perimeter of Irregular Figures
    Here we will get the ideas how to solve the problems on finding the perimeter and area of irregular figures. The figure PQRSTU is a hexagon. PS is a diagonal and QY, RO, TX and UZ are the respective d…

    Read More

  4. Perimeter and Area of Plane Figures | Definition of Perimeter and Area

    Jul 26, 24 11:50 AM

    Perimeter of a Triangle
    A plane figure is made of line segments or arcs of curves in a plane. It is a closed figure if the figure begins and ends at the same point. We are familiar with plane figures like squares, rectangles…

    Read More

  5. 5th Grade Math Problems | Table of Contents | Worksheets |Free Answers

    Jul 26, 24 01:35 AM

    In 5th grade math problems you will get all types of examples on different topics along with the solutions. Keeping in mind the mental level of child in Grade 5, every efforts has been made to introdu…

    Read More