Circle Through the Intersection of Two Circles

We will learn how to find the equation of a circle through the intersection of two given circles.

The equation of a family of circles passing through the intersection of the circles P\(_{1}\) = x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\) = 0 and P\(_{2}\) = x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\) = 0 is P\(_{1}\) + λP\(_{2}\) = 0 i.e., (x\(^{2}\) + y\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c\(_{1}\)) + λ(x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\)) = 0, where λ (≠ -1) in an arbitrary real number.

Proof:

Let the equations of the given circles be 

P\(_{1}\) = x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\) = 0 ………………………..(i) and

P\(_{2}\) = x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\) ………………………..(ii)

Circle Through the Intersection of Two CirclesCircle Through the Intersection of Two Circles

Consider the equation P\(_{1}\) + λP\(_{2}\) = 0 i.e., the equation of any curve through the points of intersection of the circles (1) and (2) is

(x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\)) + λ(x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\)) = 0 ………………………..(iii)

Clearly, it represents a circle for all values of λ except λ = -1. For λ = -1 (iii) becomes a first degree equation in x, y which represents a line. In order to prove that it passes through the points of intersection of the two given circles, it is sufficient to show that their points of intersection satisfy (iii).

Let (x\(_{1}\), y\(_{1}\)) be a point of intersection of the given circles.

Then,
\(\mathrm{x_{1}^{2} + y_{1}^{2} + 2g_{1}x_{1} + 2f_{1}y_{1} + c_{1}}\) and \(\mathrm{x_{1}^{2} + y_{1}^{2} + 2g_{2}x_{1} + 2f_{2}y_{1} + c_{2}}\)

⇒ (\(\mathrm{x_{1}^{2} + y_{1}^{2} + 2g_{1}x_{1} + 2f_{1}y_{1} + c_{1}}\)) +  λ(\(\mathrm{x_{1}^{2} + y_{1}^{2} + 2g_{2}x_{1} + 2f_{2}y_{1} + c_{2}}\)) = 0 + λ0 = 0

⇒ (x\(_{1}\), y\(_{1}\)) lies on (iii).

Similarly, it can be proved that the second point of intersection of the given circles also satisfy (i)

Hence, (iii) gives the family of circles passing through the intersection of the given circles.

In other words, the equation of any curve through the points of intersection of the circles (i) and (ii) is
(x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\)) + λ(x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\))………………………..(iv)

⇒ (1 + λ)(x\(^{2}\) + y\(^{2}\)) + 2(g\(_{1}\) + g\(_{2}\)λ)x + 2(f\(_{1}\) + f\(_{2}\)λ)y + c\(_{1}\) + λc\(_{2}\) = 0

⇒ x\(^{2}\) + y\(^{2}\) + 2 ∙ \(\mathrm{\frac{g_{1} + g_{2}λ}{1 + λ}}\) x + 2 ∙ \(\mathrm{\frac{f_{1} + f_{2}λ}{1 + λ}}\)y + \(\mathrm{\frac{c_{1} + c_{2}λ}{1 + λ}}\) = 0 ………………………..(v)   

If λ ≠ - 1, then equation (v) will represent the equation of a circle. Therefore, the equation (iv) represents the family of circles through the points of intersection of the circles (1) and (2). 


Solved examples to find the equations of a circle through the points of intersection of two given circles: 

1. Find the equation of the circle through the intersection of the circles x\(^{2}\) + y\(^{2}\) - 8x - 2y + 7 = 0 and x\(^{2}\) + y\(^{2}\) - 4x + 10y + 8 = 0 and passes through the point (-1, -2).

Solution:

The equation of any circles passing through the intersection of the circles S\(_{1}\) = x\(^{2}\) + y\(^{2}\) - 8x - 2y + 7 = 0 and S\(_{2}\) = x\(^{2}\) + y\(^{2}\) - 4x + 10y + 8 = 0 is S\(_{1}\) + λS\(_{2}\) = 0 

Therefore, the equation of the required circle is (x\(^{2}\) + y\(^{2}\) - 8x - 2y + 7) + λ(x\(^{2}\) + y\(^{2}\) - 4x + 10y + 8) = 0, where λ (≠ -1) in an arbitrary real number

This circle passes through the point (-1, -2), therefore, 
 (1 + λ) + 4(1 + λ) + 4(2 + λ) + 4(1 - 5λ) + 7 + 8λ = 0

⇒ 24 - 3λ = 0

⇒ λ = 8

Now putting the value of λ = 8 in the equation (x\(^{2}\) + y\(^{2}\) - 8x - 2y + 7) + λ(x\(^{2}\) + y\(^{2}\) - 4x + 10y + 8) = 0 we get the required equation as 9x\(^{2}\) + 9y\(^{2}\) – 40x + 78y + 71 = 0.


2. Find the equation of the circle through the intersection of the circles x\(^{2}\) + y\(^{2}\) - x + 7y - 3 = 0 and x\(^{2}\) + y\(^{2}\) - 5x - y + 1 = 0, having its centre on the line x + y = 0. 

Solution:

x\(^{2}\) + y\(^{2}\) - x + 7y - 3 + λ(x\(^{2}\) + y\(^{2}\) - 5x - y + 1) = 0, (λ ≠1)

⇒(1 + λ) (x\(^{2}\) + y\(^{2}\)) - (1 +  5λ)x + (7 - λ)y - 3 + λ = 0

⇒ x\(^{2}\) + y\(^{2}\) - \(\frac{1 + 5λ}{1 + λ}\)x - \(\frac{λ - 7}{1 + λ}\)y + \(\frac{λ - 3}{1 + λ}\) = 0 …………….(i)

Clearly, the co-ordinates of the centre of the circle (i) are [\(\frac{1 + 5λ}{2(1 + λ)}\), \(\frac{λ - 7}{2(1 + λ)}\)] By question, this point lies on the line x + y = 0. 

Therefore, \(\frac{1 + 5λ}{2(1 + λ)}\) + \(\frac{λ - 7}{2(1 + λ)}\) = 0 

⇒1 + 5λ + λ - 7 = 0 

⇒ 6λ =  6

⇒ λ = 1

Therefore, the equation of the required circle is 2(x\(^{2}\) + y\(^{2}\)) - 6x + 6y - 2 = 0, [putting λ = 1 in (1)] 

⇒ x\(^{2}\) + y\(^{2}\) - 3x + 3y - 1 = 0. 

 The Circle




11 and 12 Grade Math 

From Circle through the Intersection of Two Circles to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Multiplication of a Number by a 3-Digit Number |3-Digit Multiplication

    Mar 28, 24 06:33 PM

    Multiplying by 3-Digit Number
    In multiplication of a number by a 3-digit number are explained here step by step. Consider the following examples on multiplication of a number by a 3-digit number: 1. Find the product of 36 × 137

    Read More

  2. Multiply a Number by a 2-Digit Number | Multiplying 2-Digit by 2-Digit

    Mar 27, 24 05:21 PM

    Multiply 2-Digit Numbers by a 2-Digit Numbers
    How to multiply a number by a 2-digit number? We shall revise here to multiply 2-digit and 3-digit numbers by a 2-digit number (multiplier) as well as learn another procedure for the multiplication of…

    Read More

  3. Multiplication by 1-digit Number | Multiplying 1-Digit by 4-Digit

    Mar 26, 24 04:14 PM

    Multiplication by 1-digit Number
    How to Multiply by a 1-Digit Number We will learn how to multiply any number by a one-digit number. Multiply 2154 and 4. Solution: Step I: Arrange the numbers vertically. Step II: First multiply the d…

    Read More

  4. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Mar 25, 24 05:36 PM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More

  5. Multiplying 2-Digit Number by 1-Digit Number | Multiply Two-Digit Numb

    Mar 25, 24 04:18 PM

    Multiplying 2-Digit Number by 1-Digit Number
    Here we will learn multiplying 2-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. Examples of multiplying 2-digit number by

    Read More