Circle Through the Intersection of Two Circles

We will learn how to find the equation of a circle through the intersection of two given circles.

The equation of a family of circles passing through the intersection of the circles P\(_{1}\) = x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\) = 0 and P\(_{2}\) = x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\) = 0 is P\(_{1}\) + λP\(_{2}\) = 0 i.e., (x\(^{2}\) + y\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c\(_{1}\)) + λ(x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\)) = 0, where λ (≠ -1) in an arbitrary real number.

Proof:

Let the equations of the given circles be 

P\(_{1}\) = x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\) = 0 ………………………..(i) and

P\(_{2}\) = x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\) ………………………..(ii)

Circle Through the Intersection of Two CirclesCircle Through the Intersection of Two Circles

Consider the equation P\(_{1}\) + λP\(_{2}\) = 0 i.e., the equation of any curve through the points of intersection of the circles (1) and (2) is

(x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\)) + λ(x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\)) = 0 ………………………..(iii)

Clearly, it represents a circle for all values of λ except λ = -1. For λ = -1 (iii) becomes a first degree equation in x, y which represents a line. In order to prove that it passes through the points of intersection of the two given circles, it is sufficient to show that their points of intersection satisfy (iii).

Let (x\(_{1}\), y\(_{1}\)) be a point of intersection of the given circles.

Then,
\(\mathrm{x_{1}^{2} + y_{1}^{2} + 2g_{1}x_{1} + 2f_{1}y_{1} + c_{1}}\) and \(\mathrm{x_{1}^{2} + y_{1}^{2} + 2g_{2}x_{1} + 2f_{2}y_{1} + c_{2}}\)

⇒ (\(\mathrm{x_{1}^{2} + y_{1}^{2} + 2g_{1}x_{1} + 2f_{1}y_{1} + c_{1}}\)) +  λ(\(\mathrm{x_{1}^{2} + y_{1}^{2} + 2g_{2}x_{1} + 2f_{2}y_{1} + c_{2}}\)) = 0 + λ0 = 0

⇒ (x\(_{1}\), y\(_{1}\)) lies on (iii).

Similarly, it can be proved that the second point of intersection of the given circles also satisfy (i)

Hence, (iii) gives the family of circles passing through the intersection of the given circles.

In other words, the equation of any curve through the points of intersection of the circles (i) and (ii) is
(x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\)) + λ(x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\))………………………..(iv)

⇒ (1 + λ)(x\(^{2}\) + y\(^{2}\)) + 2(g\(_{1}\) + g\(_{2}\)λ)x + 2(f\(_{1}\) + f\(_{2}\)λ)y + c\(_{1}\) + λc\(_{2}\) = 0

⇒ x\(^{2}\) + y\(^{2}\) + 2 ∙ \(\mathrm{\frac{g_{1} + g_{2}λ}{1 + λ}}\) x + 2 ∙ \(\mathrm{\frac{f_{1} + f_{2}λ}{1 + λ}}\)y + \(\mathrm{\frac{c_{1} + c_{2}λ}{1 + λ}}\) = 0 ………………………..(v)   

If λ ≠ - 1, then equation (v) will represent the equation of a circle. Therefore, the equation (iv) represents the family of circles through the points of intersection of the circles (1) and (2). 


Solved examples to find the equations of a circle through the points of intersection of two given circles: 

1. Find the equation of the circle through the intersection of the circles x\(^{2}\) + y\(^{2}\) - 8x - 2y + 7 = 0 and x\(^{2}\) + y\(^{2}\) - 4x + 10y + 8 = 0 and passes through the point (-1, -2).

Solution:

The equation of any circles passing through the intersection of the circles S\(_{1}\) = x\(^{2}\) + y\(^{2}\) - 8x - 2y + 7 = 0 and S\(_{2}\) = x\(^{2}\) + y\(^{2}\) - 4x + 10y + 8 = 0 is S\(_{1}\) + λS\(_{2}\) = 0 

Therefore, the equation of the required circle is (x\(^{2}\) + y\(^{2}\) - 8x - 2y + 7) + λ(x\(^{2}\) + y\(^{2}\) - 4x + 10y + 8) = 0, where λ (≠ -1) in an arbitrary real number

This circle passes through the point (-1, -2), therefore, 
 (1 + λ) + 4(1 + λ) + 4(2 + λ) + 4(1 - 5λ) + 7 + 8λ = 0

⇒ 24 - 3λ = 0

⇒ λ = 8

Now putting the value of λ = 8 in the equation (x\(^{2}\) + y\(^{2}\) - 8x - 2y + 7) + λ(x\(^{2}\) + y\(^{2}\) - 4x + 10y + 8) = 0 we get the required equation as 9x\(^{2}\) + 9y\(^{2}\) – 40x + 78y + 71 = 0.


2. Find the equation of the circle through the intersection of the circles x\(^{2}\) + y\(^{2}\) - x + 7y - 3 = 0 and x\(^{2}\) + y\(^{2}\) - 5x - y + 1 = 0, having its centre on the line x + y = 0. 

Solution:

x\(^{2}\) + y\(^{2}\) - x + 7y - 3 + λ(x\(^{2}\) + y\(^{2}\) - 5x - y + 1) = 0, (λ ≠1)

⇒(1 + λ) (x\(^{2}\) + y\(^{2}\)) - (1 +  5λ)x + (7 - λ)y - 3 + λ = 0

⇒ x\(^{2}\) + y\(^{2}\) - \(\frac{1 + 5λ}{1 + λ}\)x - \(\frac{λ - 7}{1 + λ}\)y + \(\frac{λ - 3}{1 + λ}\) = 0 …………….(i)

Clearly, the co-ordinates of the centre of the circle (i) are [\(\frac{1 + 5λ}{2(1 + λ)}\), \(\frac{λ - 7}{2(1 + λ)}\)] By question, this point lies on the line x + y = 0. 

Therefore, \(\frac{1 + 5λ}{2(1 + λ)}\) + \(\frac{λ - 7}{2(1 + λ)}\) = 0 

⇒1 + 5λ + λ - 7 = 0 

⇒ 6λ =  6

⇒ λ = 1

Therefore, the equation of the required circle is 2(x\(^{2}\) + y\(^{2}\)) - 6x + 6y - 2 = 0, [putting λ = 1 in (1)] 

⇒ x\(^{2}\) + y\(^{2}\) - 3x + 3y - 1 = 0. 

 The Circle




11 and 12 Grade Math 

From Circle through the Intersection of Two Circles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheets on Comparison of Numbers | Find the Greatest Number

    Oct 10, 24 05:15 PM

    Comparison of Two Numbers
    In worksheets on comparison of numbers students can practice the questions for fourth grade to compare numbers. This worksheet contains questions on numbers like to find the greatest number, arranging…

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Oct 10, 24 10:06 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Oct 10, 24 03:19 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  4. Place Value | Place, Place Value and Face Value | Grouping the Digits

    Oct 09, 24 05:16 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  5. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More