General Equation of Second Degree Represents a Circle

We will learn how the general equation of second degree represents a circle.

General second degree equation in x and y is

ax\(^{2}\) + 2hxy + by\(^{2}\) + 2gx + 2fy + C = 0, where a, h, b, g, f and c are constants.

If a = b(≠ 0 ) and h = 0, then the above equation becomes

ax\(^{2}\) + ay\(^{2}\) + 2gx + 2fy + c = 0

 x\(^{2}\) + y\(^{2}\) + 2 ∙ \(\frac{g}{a}\) x + 2 ∙ \(\frac{f}{a}\) y + \(\frac{c}{a}\) = 0, (Since, a ≠ 0)

  x\(^{2}\) + 2 ∙ x ∙ \(\frac{g}{a}\) + \(\frac{g^{2}}{a^{2}}\)  + y\(^{2}\) + 2.y .\(\frac{f}{a}\) + \(\frac{f^{2}}{a^{2}}\)  = \(\frac{g^{2}}{a^{2}}\)  + \(\frac{f^{2}}{a^{2}}\)  - \(\frac{c}{a}\)

 (x + \(\frac{g}{a}\))\(^{2}\) + (y + \(\frac{f}{a}\))\(^{2}\) = \((\frac{1}{a}\sqrt{g^{2} + f^{2} - ca})^{2}\)

Which represents the equation of a circle having centre at (-\(\frac{g}{a}\), -\(\frac{f}{a}\)) and radius = \(\mathrm{\frac{1}{a}\sqrt{g^{2} + f^{2} - ca}}\)


Therefore, the general second degree equation in x and y represents a circle if coefficient of x\(^{2}\) (i.e., a) = coefficient of y\(^{2}\) (i.e., b) and coefficient of xy (i.e., h) = 0.


Note: On comparing the general equation x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 of a circle with the general equation of second degree ax\(^{2}\) + 2hxy + by\(^{2}\) + 2gx + 2fy + C = 0 we find that it represents a circle if a = b i.e., coefficient of x\(^{2}\) = coefficient of y\(^{2}\) and h = 0 i.e., coefficient of xy.

The equation ax\(^{2}\) + ay\(^{2}\) + 2gx + 2fy + c = 0, a ≠ 0 also represents a circle.

This equation can be written as

x\(^{2}\) + y\(^{2}\) + 2\(\frac{g}{a}\)x + 2\(\frac{f}{a}\)y + \(\frac{c}{a}\) = 0

The coordinates of the centre are (-\(\frac{g}{a}\), -\(\frac{f}{a}\)) and radius \(\mathrm{\frac{1}{a}\sqrt{g^{2} + f^{2} - ca}}\).

Special features of the general equation ax\(^{2}\) + 2hxy + by\(^{2}\) + 2gx + 2fy + C = 0 of the circle are:

(i) It is a quadratic equation in both x and y.

(ii) Coefficient of x\(^{2}\) = Coefficient of y\(^{2}\). In solving problems it is advisable to keep the coefficient of x\(^{2}\) and y\(^{2}\) unity.

(iii) There is no term containing xy i.e., the coefficient of xy is zero.

(iv) It contains three arbitrary constants viz. g, f and c.

 The Circle




11 and 12 Grade Math 

From General Equation of Second Degree Represents a Circle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. How to Do Long Division? | Method | Steps | Examples | Worksheets |Ans

    Jan 23, 25 02:43 PM

    Long Division and Short Division Forms
    As we know that the division is to distribute a given value or quantity into groups having equal values. In long division, values at the individual place (Thousands, Hundreds, Tens, Ones) are dividend…

    Read More

  2. Long Division Method with Regrouping and without Remainder | Division

    Jan 23, 25 02:25 PM

    Dividing a 2-Digits Number by 1-Digit Number With Regrouping
    We will discuss here how to solve step-by-step the long division method with regrouping and without remainder. Consider the following examples: 468 ÷ 3

    Read More

  3. Long Division Method Without Regrouping and Without Remainder | Divide

    Jan 23, 25 10:44 AM

    Dividing a 2-Digits Number by 1-Digit Number
    We will discuss here how to solve step-by-step the long division method without regrouping and without remainder. Consider the following examples: 1. 848 ÷ 4

    Read More

  4. Relationship between Multiplication and Division |Inverse Relationship

    Jan 23, 25 02:00 AM

    We know that multiplication is repeated addition and division is repeated subtraction. This means that multiplication and division are inverse operation. Let us understand this with the following exam…

    Read More

  5. Divide by Repeated Subtraction | Division as Repeated Subtraction

    Jan 22, 25 02:23 PM

    Divide by Repeated Subtraction
    How to divide by repeated subtraction? We will learn how to find the quotient and remainder by the method of repeated subtraction a division problem may be solved.

    Read More