Equations of Concentric Circles

We will learn how to form the equation of concentric circles.

Two circles or more than that are said to be concentric if they have the same centre but different radii.

Let, x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 be a given circle having centre at (- g, - f) and radius = \(\mathrm{\sqrt{g^{2} + f^{2} - c}}\).

Therefore, the equation of a circle concentric with the given circle x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 is

x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c' = 0 

Both the circle have the same centre (- g, - f) but their radii are not equal (since, c ≠ c')

Similarly, the equation of a circle with centre at (h, k) and radius equal to r, is (x - h)\(^{2}\) + (y - k)\(^{2}\) = r\(^{2}\).

Therefore, the equation of a circle concentric with the circle (x - h)\(^{2}\) + (y - k)\(^{2}\) = r\(^{2}\) is  (x - h)\(^{2}\) + (y - k)\(^{2}\) = r\(_{1}\)\(^{2}\), (r\(_{1}\) ≠ r)      

Assigning different values to r\(_{1}\) we shall have a family of circles each of which is concentric with the circle (x - h)\(^{2}\) + (y - k)\(^{2}\) = r\(^{2}\).


Solved example to find the equation of a concentric circle:

Find the equation of the circle which is concentric with the circle 2x\(^{2}\) + 2y\(^{2}\) + 3x - 4y + 5 = 0 and whose radius is 2√5 units.

Solution:         

2x\(^{2}\) + 2y\(^{2}\) + 3x - 4y + 5 = 0

⇒ x\(^{2}\) + y\(^{2}\) + 3/2x - 2y + \(\frac{5}{2}\) = 0 ………………..(i)

Clearly, the equation of a circle concentric with the circle (i) is

x\(^{2}\) + y\(^{2}\) + \(\frac{3}{2}\)x - 2y + c = 0 ……………………..(ii)

Now, the radius of the circle (ii) = \(\sqrt{(\frac{3}{2})^{2} + (-2)^{2} - c}\)

By question, \(\sqrt{\frac{9}{4} + 4 - c}\) = 2√5

⇒ \(\frac{25}{4}\) - c = 20

⇒ c = \(\frac{25}{4}\) - 20

c = -\(\frac{55}{4}\)

Therefore, the equation of the required circle is

x\(^{2}\) + y\(^{2}\) + \(\frac{3}{2}\)x - 2y - \(\frac{55}{4}\) = 0

⇒ 4x\(^{2}\) + 4y\(^{2}\) + 6x - 8y - 55 = 0.

 The Circle




11 and 12 Grade Math 

From Equations of Concentric Circles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Properties of Division | Division of Property Overview|Math Properties

    Jan 22, 25 01:30 AM

    Properties of Division
    The properties of division are discussed here: 1. If we divide a number by 1 the quotient is the number itself. In other words, when any number is divided by 1, we always get the number itself as the…

    Read More

  2. Terms Used in Division | Dividend | Divisor | Quotient | Remainder

    Jan 22, 25 12:54 AM

    Divide 12 Candies
    The terms used in division are dividend, divisor, quotient and remainder. Division is repeated subtraction. For example: 24 ÷ 6 How many times would you subtract 6 from 24 to reach 0?

    Read More

  3. Divide on a Number Line | Various Division Problems | Solved Examples

    Jan 22, 25 12:41 AM

    How to divide on a number line? Learn to divide using number line to find the quotient. Solved examples to show divide on a number line: 1. Solve 14 ÷ 7 Solution: 7 is subtracted repeatedly

    Read More

  4. Divide by Repeated Subtraction | Division as Repeated Subtraction

    Jan 22, 25 12:18 AM

    Divide by Repeated Subtraction
    How to divide by repeated subtraction? We will learn how to find the quotient and remainder by the method of repeated subtraction a division problem may be solved.

    Read More

  5. Division Sharing and Grouping | Facts about Division | Basic Division

    Jan 21, 25 08:06 AM

    Sharing and Grouping
    We will learn division sharing and grouping. Share eight strawberries between four children. Let us distribute strawberries equally to all the four children one by one.

    Read More