# Exact Value of tan 27°

We will learn to find the exact value of tan 27 degrees using the formula of submultiple angles.

How to find the exact value of tan 27°?

Solution:

We have, (sin 27° + cos 27°)$$^{2}$$ = sin$$^{2}$$ 27° + cos$$^{2}$$ 27° + 2 sin 27° cos 27°

⇒ (sin 27° + cos 27°)$$^{2}$$ = 1+ sin 2 ∙ 27°

⇒ (sin 27° + cos 27°)$$^{2}$$ = 1 + sin 54°

⇒ (sin 27° + cos 27°)$$^{2}$$ = 1 + sin (90° - 36°)

⇒ (sin 27° + cos 27°)$$^{2}$$ = 1 + cos 36°

⇒ (sin 27° + cos 27°)$$^{2}$$ = 1+ $$\frac{√5 + 1}{4}$$

⇒ (sin 27° + cos 27°)$$^{2}$$ = $$\frac{1}{4}$$ ( 5 + √ 5)

Therefore,  sin 27° + cos 27° = $$\frac{1}{2}\sqrt{5 + \sqrt{5}}$$ …………….….(i)

[Since, sin 27° > 0 and cos 27° > 0)

Similarly, we have,

(sin 27° - cos 27°)$$^{2}$$ = 1 - cos 36°

⇒ (sin 27° - cos 27°)$$^{2}$$ = 1 - $$\frac{√5 +1}{4}$$

⇒ (sin 27° - cos 27°)$$^{2}$$ = $$\frac{1}{4}$$ (3 - √5  )
Therefore, sin 27° - cos 27° = ± $$\frac{1}{2}\sqrt{3 - \sqrt{5}}$$ …………….….(ii)
Now, sin 27° - cos 27° = √2 ($$\frac{1}{√2}$$ sin 27˚ - $$\frac{1}{√2}$$ cos 27°)

=√2 (cos 45° sin 27° - sin 45° cos 27°)

= √2 sin (27° - 45°)

= -√2 sin 18° < 0

Therefore, from (ii) we get,

sin 27° - cos 27° = -$$\frac{1}{2}\sqrt{3 - \sqrt{5}}$$ …………….….(iii)

Now, adding (i) and (iii) we get,

2 sin 27° = $$\frac{1}{2}\sqrt{5 + \sqrt{5}}$$ - $$\frac{1}{2}\sqrt{3 - \sqrt{5}}$$

⇒ sin 27° = $$\frac{1}{4}(\sqrt{5 + \sqrt{5}} - \sqrt{3 - \sqrt{5}})$$

Therefore, sin 27° = $$\frac{1}{4}(\sqrt{5 + \sqrt{5}} - \sqrt{3 - \sqrt{5}})$$…………….….(iv)

Again, subtracting (iii) and (i) we get,

2 cos 27° = $$\frac{1}{2}\sqrt{5 + \sqrt{5}}$$ + $$\frac{1}{2}\sqrt{3 - \sqrt{5}}$$

⇒ cos 27° = $$\frac{1}{4}(\sqrt{5 + \sqrt{5}} + \sqrt{3 - \sqrt{5}})$$

Therefore, cos 27° = $$\frac{1}{4}(\sqrt{5 + \sqrt{5}} + \sqrt{3 - \sqrt{5}})$$…………….….(v)

Now dividing (iv) by (v) we get,

tan 27° = $$\frac{\sqrt{5 + \sqrt{5}} - \sqrt{3 - \sqrt{5}}}{\sqrt{5 + \sqrt{5}} + \sqrt{3 - \sqrt{5}}}$$

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Constructing a Line Segment |Construction of Line Segment|Constructing

Aug 14, 24 09:52 AM

We will discuss here about constructing a line segment. We know how to draw a line segment of a certain length. Suppose we want to draw a line segment of 4.5 cm length.

2. ### Construction of Perpendicular Lines by Using a Protractor, Set-square

Aug 14, 24 02:39 AM

Construction of perpendicular lines by using a protractor is discussed here. To construct a perpendicular to a given line l at a given point A on it, we need to follow the given procedure

3. ### Construction of a Circle | Working Rules | Step-by-step Explanation |

Aug 13, 24 01:27 AM

Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

4. ### Practical Geometry | Ruler | Set-Squares | Protractor |Compass|Divider

Aug 12, 24 03:20 PM

In practical geometry, we study geometrical constructions. The word 'construction' in geometry is used for drawing a correct and accurate figure from the given measurements. In this chapter, we shall…