Subscribe to our YouTube channel for the latest videos, updates, and tips.


Exact Value of cot 7½°

How to find the exact value of cot 7½° using the value of cos 15°?

Solution: 

7½° lies in the first quadrant.

Therefore, both sin 7½° and cos 7½° is positive.

For all values of the angle A we know that, sin (α - β) = sin α cos β - cos α sin β.

Therefore, sin 15° = sin (45° - 30°)

                         = \(\frac{1}{√2}\)∙\(\frac{√3}{2}\) - \(\frac{1}{√2}\)∙\(\frac{1}{2}\)

                         = \(\frac{√3}{2√2}\) - \(\frac{1}{2√2}\)

                         = \(\frac{√3 - 1}{2√2}\)

Again, for all values of the angle A we know that, cos (α - β) = cos α cos β + sin α sin β.

Therefore, cos 15° = cos (45° - 30°)

cos 15° = cos 45° cos 30° + sin 45° sin 30°

           = \(\frac{1}{√2}\)∙\(\frac{√3}{2}\) + \(\frac{1}{√2}\)∙\(\frac{1}{2}\)

           = \(\frac{√3}{2√2}\) + \(\frac{1}{2√2}\)

           = \(\frac{√3 + 1}{2√2}\)

Now cot 7½°

= \(\frac{cos 7½°}{sin 7½°}\)

= \(\frac{2 cos  7½° ∙ cos  7½°}{2 sin  7½° ∙ cos  7½°}\)

= \(\frac{2 cos^{2}  7½° }{2 sin  7½° cos  7½°}\)

= \(\frac{1 + cos 15°}{sin 15°}\)

= \(\frac{1 + cos (45° - 30°)}{sin (45° - 30°)}\)

= \(\frac{1 + \frac{√3 + 1}{2√2}}{\frac{√3 - 1}{2√2}}\)

= \(\frac{2√2 + √3 + 1}{√3 - 1}\)

= \(\frac{(2√2 + √3 + 1)(√3 + 1)}{(√3 - 1)(√3 + 1)}\)

= \(\frac{2√6 + 2√2 + 3 + √3 + √3 + 1}{3 - 1}\)

= \(\frac{2√6 + 2√2 + 2√3 + 4}{2}\)

= √6 + √2 + √3 + 2

= 2 + √2 + √3 + √6

 Submultiple Angles






11 and 12 Grade Math

From Exact Value of cot 7 and Half Degree to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Rounding Decimals | Questions Related to Round a Decimal

    May 14, 25 04:21 PM

    The worksheet on rounding decimals would be really good for the students to practice huge number of questions related to round a decimal. This worksheet include questions related

    Read More

  2. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 14, 25 03:01 PM

    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More

  3. Worksheet on Rounding Off Number | Rounding off Number | Nearest 10

    May 14, 25 12:50 PM

    In worksheet on rounding off number we will solve 10 different types of problems. 1. Round off to nearest 10 each of the following numbers: (a) 14 (b) 57 (c) 61 (d) 819 (e) 7729 2. Round off to

    Read More

  4. Rounding Off to the Nearest Whole Number | Nearest 10, 100, and 1000

    May 13, 25 03:43 PM

    Nearest Ten
    Here we will learn how to rounding off to the nearest whole number?

    Read More

  5. Conversion of Improper Fractions into Mixed Fractions |Solved Examples

    May 12, 25 04:52 AM

    Conversion of Improper Fractions into Mixed Fractions
    In conversion of improper fractions into mixed fractions, we follow the following steps: Step I: Obtain the improper fraction. Step II: Divide the numerator by the denominator and obtain the quotient…

    Read More