Exact Value of cos 15°

How to find the exact value of cos 15° using the value of sin 30°?

Solution:

For all values of the angle A we know that, (sin A2 + cos A2)2  = sin2 A2  + cos2 A2  + 2 sin A2 cos A2   = 1 + sin A

Therefore, sin A2  + cos A2  = ± √(1 + sin A), [taking square root on both the sides]

Now, let A = 30° then, A2 = 30°2 = 15° and from the above equation we get,

sin 15° + cos 15° = ± √(1 + sin 30°)                       ….. (i)

Similarly, for all values of the angle A we know that, (sin A2 - cos A2)2  = sin2 A2 + cos2 A2 - 2 sin A2 cos A2  = 1 - sin A

Therefore, sin A2  - cos A2  = ± √(1 - sin A), [taking square root on both the sides]

Now, let A = 30° then, A2 = 30°2 = 15° and from the above equation we get,

sin 15° - cos 15°= ± √(1 - sin 30°)                  …… (ii)

Clearly, sin 15° > 0 and cos 15˚ > 0

Therefore, sin 15° + cos 15° > 0

Therefore, from (i) we get,

sin 15° + cos 15° = √(1 + sin 30°)                                  ..... (iii)

Again, sin 15° - cos 15° = √2 (12 sin 15˚ - 12 cos 15˚)
or, sin 15° - cos 15° = √2 (cos 45° sin 15˚ - sin 45° cos 15°)

or, sin 15° - cos 15° = √2 sin (15˚ - 45˚)

or, sin 15° - cos 15° = √2 sin (- 30˚)

or, sin 15° - cos 15° = -√2 sin 30°

or, sin 15° - cos 15° = -√2 ∙ 12

or, sin 15° - cos 15° = - 22

Thus, sin 15° - cos 15° < 0

Therefore, from (ii) we get, sin 15° - cos 15°= -√(1 - sin 30°)        ..... (iv)

Now, subtracting (iv) from (iii) we get,

2 cos 15° = 1+12+112

2 cos 15° = 3+12

cos 15° = 3+122

Therefore, cos 15° = 3+122

 Submultiple Angles





11 and 12 Grade Math

From Exact Value of cos 15° to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?