Subscribe to our YouTube channel for the latest videos, updates, and tips.
How to find the exact value of tan 11¼° using the value of cos 45°?
Solution:
For all values of the angle A we know that, 2 sin2 A2 = 1 - cos A
Again, for all values of the angle A we know that, 2 sin A2 cos A2 = sin A
Now tan 11¼°
= \frac{sin 11¼°}{cos 11¼°}
= \frac{sin 11¼°}{cos 11¼°} × \frac{2 sin 11¼°}{2 sin 11¼°}
= \frac{2 sin^{2} 11¼°}{2 sin 11¼° cos 11¼°}
= \frac{1 - cos 22½°}{sin 22½°}
= \frac{1 - \sqrt{\frac{1 + cos 45°}{2}}}{\sqrt{\frac{1 - cos 45°}{2}}}
= \frac{\sqrt{2} - \sqrt{1 + cos 45°}}{\sqrt{1 - cos 45°}}
= \frac{\sqrt{2} - \sqrt{1 + \frac{1}{\sqrt{2}}}}{\sqrt{1 - \frac{1}{\sqrt{2}}}}
= \frac{\sqrt{2} - \sqrt{\frac{\sqrt{2} + 1}{\sqrt{2}}}}{\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2}}}}
= \frac{\sqrt{2\sqrt{2}} - \sqrt{\sqrt{2} + 1}}{\sqrt{\sqrt{2} - 1}}
= \frac{\sqrt{2\sqrt{2}} - \sqrt{\sqrt{2} + 1}}{\sqrt{\sqrt{2} - 1}} × \frac{\sqrt{\sqrt{2} + 1}}{\sqrt{\sqrt{2} + 1}}
= \frac{\sqrt{2\sqrt{2}}\cdot \sqrt{\sqrt{2} + 1} - \sqrt{(\sqrt{2} + 1)^{2}}}{\sqrt{(\sqrt{2} + 1)(\sqrt{2} - 1)}}
= \frac{\sqrt{2\sqrt{2}{(\sqrt{2} + 1})}-(\sqrt{2} + 1)}{{\sqrt{2 - 1}}}
= \sqrt{4 + 2\sqrt{2}} - (\sqrt{2} + 1)
11 and 12 Grade Math
From Exact Value of tan 11¼° to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
May 19, 25 02:53 PM
May 18, 25 04:33 PM
May 17, 25 04:04 PM
May 17, 25 03:47 PM
May 16, 25 11:13 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.