How to find the exact value of tan 11¼° using the value of cos 45°?
Solution:
For all values of the angle A we know that, 2 sin\(^{2}\) \(\frac{A}{2}\) = 1 - cos A
Again, for all values of the angle A we know that, 2 sin \(\frac{A}{2}\) cos \(\frac{A}{2}\) = sin A
Now tan 11¼°
= \(\frac{sin 11¼°}{cos 11¼°}\)
= \(\frac{sin 11¼°}{cos 11¼°}\) × \(\frac{2 sin 11¼°}{2 sin 11¼°}\)
= \(\frac{2 sin^{2} 11¼°}{2 sin 11¼° cos 11¼°}\)
= \(\frac{1 - cos 22½°}{sin 22½°}\)
= \(\frac{1 - \sqrt{\frac{1 + cos 45°}{2}}}{\sqrt{\frac{1 - cos 45°}{2}}}\)
= \(\frac{\sqrt{2} - \sqrt{1 + cos 45°}}{\sqrt{1 - cos 45°}}\)
= \(\frac{\sqrt{2} - \sqrt{1 + \frac{1}{\sqrt{2}}}}{\sqrt{1 - \frac{1}{\sqrt{2}}}}\)
= \(\frac{\sqrt{2} - \sqrt{\frac{\sqrt{2} + 1}{\sqrt{2}}}}{\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2}}}}\)
= \(\frac{\sqrt{2\sqrt{2}} - \sqrt{\sqrt{2} + 1}}{\sqrt{\sqrt{2} - 1}}\)
= \(\frac{\sqrt{2\sqrt{2}} - \sqrt{\sqrt{2} + 1}}{\sqrt{\sqrt{2} - 1}}\) × \(\frac{\sqrt{\sqrt{2} + 1}}{\sqrt{\sqrt{2} + 1}}\)
= \(\frac{\sqrt{2\sqrt{2}}\cdot \sqrt{\sqrt{2} + 1} - \sqrt{(\sqrt{2} + 1)^{2}}}{\sqrt{(\sqrt{2} + 1)(\sqrt{2} - 1)}}\)
= \(\frac{\sqrt{2\sqrt{2}{(\sqrt{2} + 1})}-(\sqrt{2} + 1)}{{\sqrt{2 - 1}}}\)
= \(\sqrt{4 + 2\sqrt{2}} - (\sqrt{2} + 1)\)
11 and 12 Grade Math
From Exact Value of tan 11¼° to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Dec 14, 24 02:12 PM
Dec 14, 24 12:25 PM
Dec 13, 24 08:43 AM
Dec 13, 24 12:31 AM
Dec 12, 24 11:22 PM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.