# Exact Value of tan 11¼°

How to find the exact value of tan 11¼° using the value of cos 45°?

Solution:

For all values of the angle A we know that, 2 sin$$^{2}$$ $$\frac{A}{2}$$ = 1 - cos A

Again, for all values of the angle A we know that, 2 sin $$\frac{A}{2}$$ cos $$\frac{A}{2}$$ = sin A

Now tan 11¼°

= $$\frac{sin 11¼°}{cos 11¼°}$$

= $$\frac{sin 11¼°}{cos 11¼°}$$ × $$\frac{2 sin 11¼°}{2 sin 11¼°}$$

= $$\frac{2 sin^{2} 11¼°}{2 sin 11¼° cos 11¼°}$$

= $$\frac{1 - cos 22½°}{sin 22½°}$$

= $$\frac{1 - \sqrt{\frac{1 + cos 45°}{2}}}{\sqrt{\frac{1 - cos 45°}{2}}}$$

= $$\frac{\sqrt{2} - \sqrt{1 + cos 45°}}{\sqrt{1 - cos 45°}}$$

= $$\frac{\sqrt{2} - \sqrt{1 + \frac{1}{\sqrt{2}}}}{\sqrt{1 - \frac{1}{\sqrt{2}}}}$$

= $$\frac{\sqrt{2} - \sqrt{\frac{\sqrt{2} + 1}{\sqrt{2}}}}{\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2}}}}$$

= $$\frac{\sqrt{2\sqrt{2}} - \sqrt{\sqrt{2} + 1}}{\sqrt{\sqrt{2} - 1}}$$

= $$\frac{\sqrt{2\sqrt{2}} - \sqrt{\sqrt{2} + 1}}{\sqrt{\sqrt{2} - 1}}$$ × $$\frac{\sqrt{\sqrt{2} + 1}}{\sqrt{\sqrt{2} + 1}}$$

= $$\frac{\sqrt{2\sqrt{2}}\cdot \sqrt{\sqrt{2} + 1} - \sqrt{(\sqrt{2} + 1)^{2}}}{\sqrt{(\sqrt{2} + 1)(\sqrt{2} - 1)}}$$

= $$\frac{\sqrt{2\sqrt{2}{(\sqrt{2} + 1})}-(\sqrt{2} + 1)}{{\sqrt{2 - 1}}}$$

= $$\sqrt{4 + 2\sqrt{2}} - (\sqrt{2} + 1)$$

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Arranging Numbers | Ascending Order | Descending Order |Compare Digits

Sep 15, 24 04:57 PM

We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

2. ### Counting Before, After and Between Numbers up to 10 | Number Counting

Sep 15, 24 04:08 PM

Counting before, after and between numbers up to 10 improves the child’s counting skills.

3. ### Comparison of Three-digit Numbers | Arrange 3-digit Numbers |Questions

Sep 15, 24 03:16 PM

What are the rules for the comparison of three-digit numbers? (i) The numbers having less than three digits are always smaller than the numbers having three digits as:

4. ### 2nd Grade Place Value | Definition | Explanation | Examples |Worksheet

Sep 14, 24 04:31 PM

The value of a digit in a given number depends on its place or position in the number. This value is called its place value.