We will learn to find the exact value of cos 18 degrees using the formula of multiple angles.
How to find exact value of cos 18°?
Let, A = 18°
Therefore, 5A = 90°
⇒ 2A + 3A = 90˚
⇒ 2A = 90˚ - 3A
Taking sine on both sides, we get
sin 2A = sin (90˚ - 3A) = cos
3A
⇒ 2 sin A cos A = 4 cos\(^{3}\) A - 3 cos A
⇒ 2 sin A cos A - 4 cos\(^{3}\) A + 3 cos A = 0
⇒ cos A (2 sin A - 4 cos\(^{2}\) A + 3) = 0
Dividing both sides by cos A = cos 18˚ ≠ 0, we get
⇒ 2 sin A - 4 (1 - sin\(^{2}\) A) + 3 = 0
⇒ 4 sin\(^{2}\) A + 2 sin A - 1 = 0, which is a quadratic in sin A
Therefore, sin A = \(\frac{-2 \pm \sqrt{- 4 (4)(-1)}}{2(4)}\)
⇒ sin A = \(\frac{-2 \pm \sqrt{4 + 16}}{8}\)
⇒ sin A = \(\frac{-2 \pm 2 \sqrt{5}}{8}\)
⇒ sin A = \(\frac{-1 \pm \sqrt{5}}{4}\)
Now sin 18° is positive, as 18° lies in first quadrant.
Therefore, sin 18° = sin A = \(\frac{√5 - 1}{4}\)
Now cos 18° = √(1 - sin\(^{2}\) 18°), [Taking positive value, cos 18° > 0]
⇒ cos 18° = \(\sqrt{1 - (\frac{\sqrt{5} - 1}{4})^{2}}\)
⇒ cos 18° = \(\sqrt{\frac{16 - (5 + 1 - 2\sqrt{5})}{16}}\)
⇒ cos 18° = \(\sqrt{\frac{10 + 2\sqrt{5}}{16}}\)
Therefore, cos 18° = \(\frac{\sqrt{10 + 2\sqrt{5}}}{4}\)
11 and 12 Grade Math
From Exact Value of cos 18° to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
May 19, 24 06:35 PM
May 19, 24 03:36 PM
May 19, 24 03:19 PM
May 19, 24 02:23 PM
May 19, 24 01:26 PM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.