Processing math: 100%

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Exact Value of tan 72°

We will learn to find the exact value of tan 72 degrees using the formula of submultiple angles.

Let, A = 18°                        

Therefore, 5A = 90° 

⇒ 2A + 3A = 90˚

⇒ 2A = 90˚ - 3A

Taking sine on both sides, we get 

sin 2A = sin (90˚ - 3A) = cos 3A 

⇒ 2 sin A cos A = 4 cos3 A - 3 cos A

⇒ 2 sin A cos A - 4 cos3 A + 3 cos A = 0

⇒ cos A (2 sin A - 4 cos2 A + 3) = 0 

Dividing both sides by cos A = cos 18˚ ≠ 0, we get

⇒ 2 sin A - 4 (1 - sin2 A) + 3 = 0

⇒ 4 sin2 A + 2 sin A - 1 = 0, which is a quadratic in sin A

Therefore, sin A = 2±4(4)(1)2(4)

⇒ sin A = 2±4+168

⇒ sin A = 2±258

⇒ sin A = 1±54

Now sin 18° is positive, as 18° lies in first quadrant.

Therefore, sin 18° = sin A = 514

Now, cos 72° = cos (90° - 18°) = sin 18° = 514

And cos 18° = √(1 - sin2 18°), [Taking positive value, cos 18° > 0]

⇒ cos 18° = 1(514)2

⇒ cos 18° = 16(5+125)16

⇒ cos 18° =  10+2516

Thus, sin 72° = sin (90° - 18°) = cos 18° = 10+254

Now, tan 72° = sin72°cos72° = 10+254514 = 10+2551

Therefore, tan 72° =10+2551

 Submultiple Angles






11 and 12 Grade Math

From Exact Value of tan 72° to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?