Exact Value of tan 142½°

How to find the exact value of tan 142½° using the value of sin 15° and cos 15°?

Solution:

For all values of the angle A and B we know that, tan (A + B) = \(\frac{tan A + tan B}{1 - tan A tan B}\), 

sin A = 2 sin \(\frac{A}{2}\) cos \(\frac{A}{2}\) 

and

cos A = cos\(^{2}\) \(\frac{A}{2}\) – sin\(^{2}\) \(\frac{A}{2}\)

Now tan 142½°

= tan (90 + 52½°)

= - cot 52½°

= \(\frac{-1}{tan 52½°}\)

= \(\frac{-1}{tan (45° + 7½°}\)

= - \(\frac{1 - tan  7½°}{1 + tan  7½°}\)

= - \(\frac{cos  7½° - sin 7½°}{cos  7½° + sin 7½°}\)

=  - \(\frac{(cos  7½° - sin 7½°)(cos  7½° - sin 7½°)}{(cos  7½° + sin 7½°)(cos  7½° - sin 7½°)}\)

= - \(\frac{(cos  7½° - sin 7½°)^{2}}{cos^{2}  7½° - sin^{2} 7½°}\)

= - \(\frac{1 - 2 sin  7½°  cos 7½°}{cos^{2}  7½° - sin^{2} 7½°}\)

= - \(\frac{1 - sin 15°}{cos 15°}\)

= - \(\frac{1 - sin (45° - 30°)}{cos (45° - 30°)}\)

= - \(\frac{1 - \frac{\sqrt{3} - 1}{2\sqrt{2}}}{\frac{\sqrt{3} + 1}{2\sqrt{2}}}\)

= - \(\frac{2√2 - √3 + 1}{√3 + 1}\)

= - \(\frac{(2√2 - √3 + 1)}{(√3 + 1)}\)  \(\frac{(√3 - 1)}{(√3 - 1)}\)

= - \(\frac{(2√2 - √3 + 1)(√3 - 1)}{3 - 1}\)

= - \(\frac{(2√2(√3 - 1) - (√3 - 1)^{2}}{2}\)

= -[√2(√3 - 1) – (2 - √3)]

= -√6 + √2 + 2 - √3

= 2 + √2 - √3 - √6

 Submultiple Angles






11 and 12 Grade Math

From Exact Value of tan 142 and Half Degree to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?