Exact Value of sin 72°

We will learn to find the exact value of sin 72 degrees using the formula of submultiple angles.


How to find the exact value of sin 72°?

Let, A = 18°                        

Therefore, 5A = 90° 

⇒ 2A + 3A = 90˚

⇒ 2A = 90˚ - 3A

Taking sine on both sides, we get 

sin 2A = sin (90˚ - 3A) = cos 3A 

⇒ 2 sin A cos A = 4 cos\(^{3}\) A - 3 cos A

⇒ 2 sin A cos A - 4 cos\(^{3}\) A + 3 cos A = 0

⇒ cos A (2 sin A - 4 cos\(^{2}\) A + 3) = 0 

Dividing both sides by cos A = cos 18˚ ≠ 0, we get

⇒ 2 sin A - 4 (1 - sin\(^{2}\) A) + 3 = 0

⇒ 4 sin\(^{2}\) A + 2 sin A - 1 = 0, which is a quadratic in sin A

Therefore, sin A = \(\frac{-2 \pm \sqrt{- 4 (4)(-1)}}{2(4)}\)

⇒ sin A = \(\frac{-2 \pm \sqrt{4 + 16}}{8}\)

⇒ sin A = \(\frac{-2 \pm 2 \sqrt{5}}{8}\)

⇒ sin A = \(\frac{-1 \pm \sqrt{5}}{4}\)

Now sin 18° is positive, as 18° lies in first quadrant.

Therefore, sin 18° = sin A = \(\frac{√5 - 1}{4}\)

And cos 18° = √(1 - sin\(^{2}\) 18°), [Taking positive value, cos 18° > 0]

⇒ cos 18° = \(\sqrt{1 - (\frac{\sqrt{5} - 1}{4})^{2}}\)

⇒ cos 18° = \(\sqrt{\frac{16 - (5 + 1 - 2\sqrt{5})}{16}}\)

⇒ cos 18° =  \(\sqrt{\frac{10 + 2\sqrt{5}}{16}}\)

Therefore, cos 18° = \(\frac{\sqrt{10 + 2\sqrt{5}}}{4}\)

Now sin 72° = sin (90° - 18°) = cos 18° = \(\frac{\sqrt{10 + 2\sqrt{5}}}{4}\)

 Submultiple Angles






11 and 12 Grade Math

From Exact Value of sin 72° to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Shifting of Digits in a Number |Exchanging the Digits to Another Place

    May 19, 24 06:35 PM

    Shifting of Digits in a Number
    What is the Effect of shifting of digits in a number? Let us observe two numbers 1528 and 5182. We see that the digits are the same, but places are different in these two numbers. Thus, if the digits…

    Read More

  2. Formation of Greatest and Smallest Numbers | Arranging the Numbers

    May 19, 24 03:36 PM

    Formation of Greatest and Smallest Numbers
    the greatest number is formed by arranging the given digits in descending order and the smallest number by arranging them in ascending order. The position of the digit at the extreme left of a number…

    Read More

  3. Formation of Numbers with the Given Digits |Making Numbers with Digits

    May 19, 24 03:19 PM

    In formation of numbers with the given digits we may say that a number is an arranged group of digits. Numbers may be formed with or without the repetition of digits.

    Read More

  4. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    May 19, 24 02:23 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More

  5. Comparison of Numbers | Compare Numbers Rules | Examples of Comparison

    May 19, 24 01:26 PM

    Rules for Comparison of Numbers
    Rule I: We know that a number with more digits is always greater than the number with less number of digits. Rule II: When the two numbers have the same number of digits, we start comparing the digits…

    Read More