We will learn to find the exact value of sin 18 degrees using the formula of multiple angles.
How to find exact value of sin 18°?
Let A = 18°
Therefore, 5A = 90°
⇒ 2A + 3A = 90˚
⇒ 2θ = 90˚ - 3A
Taking sine on both sides, we get
sin 2A = sin (90˚ - 3A) = cos
3A
⇒ 2 sin A
cos
A = 4 cos^3 A - 3 cos A
⇒ 2 sin A
cos
A - 4 cos^3A + 3 cos A
= 0
⇒ cos A (2 sin A - 4 cos^2 A + 3) = 0
Dividing both sides by cos A = cos 18˚ ≠ 0, we get
⇒ 2 sin θ - 4 (1 - sin^2 A) + 3 = 0
⇒ 4 sin^2 A + 2 sin A - 1 = 0, which is a quadratic in sin A
Therefore, sin θ = \(\frac{-2 \pm \sqrt{- 4 (4)(-1)}}{2(4)}\)
⇒ sin θ = \(\frac{-2 \pm \sqrt{4 + 16}}{8}\)
⇒ sin θ = \(\frac{-2 \pm 2 \sqrt{5}}{8}\)
⇒ sin θ = \(\frac{-1 \pm \sqrt{5}}{4}\)
Now sin 18° is positive, as 18° lies in first quadrant.
Therefore, sin 18° = sin A = \(\frac{-1 \pm \sqrt{5}}{4}\)
11 and 12 Grade Math
From Exact Value of sin 18° to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Dec 13, 24 08:43 AM
Dec 13, 24 12:31 AM
Dec 12, 24 11:22 PM
Dec 12, 24 10:31 PM
Dec 09, 24 10:39 PM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.