Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Exact Value of sin 18°

We will learn to find the exact value of sin 18 degrees using the formula of multiple angles.

How to find exact value of sin 18°?

Let A = 18°                          

Therefore, 5A = 90°

⇒ 2A + 3A = 90˚

⇒ 2θ = 90˚ - 3A

Taking sine on both sides, we get

sin 2A = sin (90˚ - 3A) = cos 3A

⇒ 2 sin A cos A = 4 cos^3 A - 3 cos A

⇒ 2 sin A cos A - 4 cos^3A + 3 cos A = 0

⇒ cos A (2 sin A - 4 cos^2 A + 3) = 0 

Dividing both sides by cos A = cos 18˚ ≠ 0, we get

⇒ 2 sin θ - 4 (1 - sin^2 A) + 3 = 0

⇒ 4 sin^2 A + 2 sin A - 1 = 0, which is a quadratic in sin A

Therefore, sin θ = \(\frac{-2 \pm \sqrt{- 4 (4)(-1)}}{2(4)}\)

⇒ sin θ = \(\frac{-2 \pm \sqrt{4 + 16}}{8}\)

⇒ sin θ = \(\frac{-2 \pm 2 \sqrt{5}}{8}\)

⇒ sin θ = \(\frac{-1 \pm \sqrt{5}}{4}\)

Now sin 18° is positive, as 18° lies in first quadrant.

Therefore, sin 18° = sin A = \(\frac{-1 \pm \sqrt{5}}{4}\)

 Submultiple Angles






11 and 12 Grade Math

From Exact Value of sin 18° to HOME PAGE


Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.