Problems on Submultiple Angles

We will learn how to solve the problems on submultiple angles formula.

1. If sin x = 3/5 and 0 < x < \(\frac{π}{2}\), find the value of tan \(\frac{x}{2}\)

Solution:

tan \(\frac{x}{2}\)

= \(\sqrt{\frac{1 - cos x}{1 + cos x}}\)

= \(\sqrt{\frac{1 - \frac{4}{5}}{1 + \frac{4}{5}}}\)

= \(\sqrt{\frac{1}{9}}\)

= \(\frac{1}{3}\)

2. Show that, (sin\(^{2}\) 24° - sin\(^{2}\) 6° ) (sin\(^{2}\) 42° - sin\(^{2}\) 12°) = \(\frac{1}{16}\)

Solution:  

L.H.S. = 1/4 (2 sin\(^{2}\) 24˚ - 2 sin\(^{2}\) 6˚)(2 sin\(^{2}\) 42˚ - 2 sin\(^{2}\) 12˚)

= ¼ [(1- cos 48°) - (1 - cos 12°)] [(1 - cos 84° ) - (1 - cos 24°)]

= ¼ (cos 12° - cos 48°)(cos 24° - cos 84°)

= ¼ (2 sin 30° sin 18° ) (2 sin 54° sin 30°)

= ¼ [2 ∙ ½ ∙ sin 18°] [2 ∙ sin(90° - 36°) × ½]

= ¼ sin 18° ∙ cos 36°

= \(\frac{1}{4}\) ∙ \(\frac{√5 - 1}{4}\) ∙ \(\frac{√5 + 1}{4}\)

= \(\frac{1}{4}\) × \(\frac{4}{16}\)

= \(\frac{1}{16}\) = R.H.S.              Proved.

 

3. If tan x = ¾ and x lies in the third quadrant, find the values of sin \(\frac{x}{2}\), cos \(\frac{x}{2}\)  and tan \(\frac{x}{2}\).

Solution:

As x lies in the third quadrant, cos x is negative

sec\(^{2}\) x = 1 + tan\(^{2}\) x = 1 + (3/4)\(^{2}\) = 1 + \(\frac{9}{16}\) = \(\frac{25}{16}\)

⇒ cos\(^{2}\) x = \(\frac{25}{16}\)

⇒ cos x = ± \(\frac{4}{5}\), but cos x is negative

Therefore, cos x = -\(\frac{4}{5}\)

Also π < x < \(\frac{3π}{2}\)

⇒ \(\frac{π}{2}\) < \(\frac{x}{2}\) < \(\frac{3π}{4}\)

⇒ \(\frac{x}{2}\)  lies in second quadrant

⇒ cos \(\frac{x}{2}\) is –ve and sin \(\frac{x}{2}\) is +ve.

Therefore, cos \(\frac{x}{2}\) = -\(\sqrt{\frac{1 + cos x}{2}}\) = -\(\sqrt{\frac{1 - \frac{4}{5}}{2}}\) = - \(\frac{1}{√10}\)

sin \(\frac{x}{2}\) = -\(\sqrt{\frac{1 - cos x}{2}}\) = \(\sqrt{\frac{1 - (-\frac{4}{5})}{2}}\) = \(\sqrt{\frac{9}{10}}\) =  \(\frac{3}{√10}\)

tan \(\frac{x}{2}\) = \(\frac{sin \frac{x}{2}}{cos \frac{x}{2}}\) = \(\frac{3}{√10}\)(\(\frac{√10}{1}\)) = -3

 

4. Show that using the formula of submultiple angles tan 6˚ tan 42˚ tan 66˚ tan 78˚ = 1.

Solution:  

L.H.S = tan 6˚ tan 42˚ tan 66˚ tan 78˚

= \(\frac{(2 sin 6˚ sin 66˚) (2 sin 42˚ sin 78˚)}{(2 cos 6˚ cos 66˚) ( 2 cos 42˚ cos 78˚)}\)

= \(\frac{( cos 60˚ - cos 72˚)( cos 36˚ - cos 120˚)}{( cos 60˚ + cos 72˚)( cos 36˚ + cos 120˚)}\)

= \(\frac{(\frac{1}{2} - sin 18˚) ( cos 36˚ + \frac{1}{2})}{(\frac{1}{2} + sin 18˚) ( cos 36˚ - \frac{1}{2})}\), [Since, cos 72˚ = cos (90˚ - 18˚) = sin 18˚ and cos 120˚ = cos ( 180˚ - 60˚) = - cos 60˚ = -1/2]

= \(\frac{(\frac{1}{2} - \frac{√5 - 1}{4}) (\frac{√5 + 1}{4} + \frac{1}{2})}{(\frac{1}{2} + \frac{√5 - 1}{4}) (\frac{√5 + 1}{4} - \frac{1}{2})}\), [ putting the values of sin 18˚ and cos 36˚]

= \(\frac{(3 - √5) ( 3 + √5)}{(√5 + 1) (√5 - 1) }\)

= \(\frac{9 - 5}{5 - 1}\)

= \(\frac{4}{4}\)

= 1 = R.H.S.              Proved.

 

5.  Without using table prove that, sin 12° sin 48° sin 54˚ = \(\frac{1}{8}\)

Solution:

L. H. S. = sin 12° sin 48° sin 54° 

= \(\frac{1}{2}\) (2 sin 12°sin 48°) sin (90°- 36°) 

= \(\frac{1}{2}\) [cos 36°- cos 60°] cos 36°

= \(\frac{1}{2}\) [√\(\frac{√5 + 1}{4}\) - \(\frac{1}{2}\)] \(\frac{√5 + 1}{4}\), [Since, cos 36˚ = \(\frac{√5 + 1}{4}\)]

= \(\frac{1}{2}\) ∙ \(\frac{√5 - 1}{4}\) ∙ \(\frac{√5 + 1}{4}\)

= \(\frac{4}{32}\)

= \(\frac{1}{8}\) =  R.H.S.              Proved.

 Submultiple Angles





11 and 12 Grade Math

From Problems on Submultiple Angles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Data Handling | Collection of Objects |Information Collected

    Dec 15, 24 03:50 PM

    Collection Data
    We have learnt, that a collection of objects can be stored out based on their color, shape, size or any other common thing among them. We can organise all the information in a table to understand how…

    Read More

  2. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 15, 24 10:27 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  3. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 14, 24 02:12 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  4. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 14, 24 12:25 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  5. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More