Problems on Submultiple Angles

We will learn how to solve the problems on submultiple angles formula.

1. If sin x = 3/5 and 0 < x < \(\frac{π}{2}\), find the value of tan \(\frac{x}{2}\)

Solution:

tan \(\frac{x}{2}\)

= \(\sqrt{\frac{1 - cos x}{1 + cos x}}\)

= \(\sqrt{\frac{1 - \frac{4}{5}}{1 + \frac{4}{5}}}\)

= \(\sqrt{\frac{1}{9}}\)

= \(\frac{1}{3}\)

2. Show that, (sin\(^{2}\) 24° - sin\(^{2}\) 6° ) (sin\(^{2}\) 42° - sin\(^{2}\) 12°) = \(\frac{1}{16}\)

Solution:  

L.H.S. = 1/4 (2 sin\(^{2}\) 24˚ - 2 sin\(^{2}\) 6˚)(2 sin\(^{2}\) 42˚ - 2 sin\(^{2}\) 12˚)

= ¼ [(1- cos 48°) - (1 - cos 12°)] [(1 - cos 84° ) - (1 - cos 24°)]

= ¼ (cos 12° - cos 48°)(cos 24° - cos 84°)

= ¼ (2 sin 30° sin 18° ) (2 sin 54° sin 30°)

= ¼ [2 ∙ ½ ∙ sin 18°] [2 ∙ sin(90° - 36°) × ½]

= ¼ sin 18° ∙ cos 36°

= \(\frac{1}{4}\) ∙ \(\frac{√5 - 1}{4}\) ∙ \(\frac{√5 + 1}{4}\)

= \(\frac{1}{4}\) × \(\frac{4}{16}\)

= \(\frac{1}{16}\) = R.H.S.              Proved.

 

3. If tan x = ¾ and x lies in the third quadrant, find the values of sin \(\frac{x}{2}\), cos \(\frac{x}{2}\)  and tan \(\frac{x}{2}\).

Solution:

As x lies in the third quadrant, cos x is negative

sec\(^{2}\) x = 1 + tan\(^{2}\) x = 1 + (3/4)\(^{2}\) = 1 + \(\frac{9}{16}\) = \(\frac{25}{16}\)

⇒ cos\(^{2}\) x = \(\frac{25}{16}\)

⇒ cos x = ± \(\frac{4}{5}\), but cos x is negative

Therefore, cos x = -\(\frac{4}{5}\)

Also π < x < \(\frac{3π}{2}\)

⇒ \(\frac{π}{2}\) < \(\frac{x}{2}\) < \(\frac{3π}{4}\)

⇒ \(\frac{x}{2}\)  lies in second quadrant

⇒ cos \(\frac{x}{2}\) is –ve and sin \(\frac{x}{2}\) is +ve.

Therefore, cos \(\frac{x}{2}\) = -\(\sqrt{\frac{1 + cos x}{2}}\) = -\(\sqrt{\frac{1 - \frac{4}{5}}{2}}\) = - \(\frac{1}{√10}\)

sin \(\frac{x}{2}\) = -\(\sqrt{\frac{1 - cos x}{2}}\) = \(\sqrt{\frac{1 - (-\frac{4}{5})}{2}}\) = \(\sqrt{\frac{9}{10}}\) =  \(\frac{3}{√10}\)

tan \(\frac{x}{2}\) = \(\frac{sin \frac{x}{2}}{cos \frac{x}{2}}\) = \(\frac{3}{√10}\)(\(\frac{√10}{1}\)) = -3

 

4. Show that using the formula of submultiple angles tan 6˚ tan 42˚ tan 66˚ tan 78˚ = 1.

Solution:  

L.H.S = tan 6˚ tan 42˚ tan 66˚ tan 78˚

= \(\frac{(2 sin 6˚ sin 66˚) (2 sin 42˚ sin 78˚)}{(2 cos 6˚ cos 66˚) ( 2 cos 42˚ cos 78˚)}\)

= \(\frac{( cos 60˚ - cos 72˚)( cos 36˚ - cos 120˚)}{( cos 60˚ + cos 72˚)( cos 36˚ + cos 120˚)}\)

= \(\frac{(\frac{1}{2} - sin 18˚) ( cos 36˚ + \frac{1}{2})}{(\frac{1}{2} + sin 18˚) ( cos 36˚ - \frac{1}{2})}\), [Since, cos 72˚ = cos (90˚ - 18˚) = sin 18˚ and cos 120˚ = cos ( 180˚ - 60˚) = - cos 60˚ = -1/2]

= \(\frac{(\frac{1}{2} - \frac{√5 - 1}{4}) (\frac{√5 + 1}{4} + \frac{1}{2})}{(\frac{1}{2} + \frac{√5 - 1}{4}) (\frac{√5 + 1}{4} - \frac{1}{2})}\), [ putting the values of sin 18˚ and cos 36˚]

= \(\frac{(3 - √5) ( 3 + √5)}{(√5 + 1) (√5 - 1) }\)

= \(\frac{9 - 5}{5 - 1}\)

= \(\frac{4}{4}\)

= 1 = R.H.S.              Proved.

 

5.  Without using table prove that, sin 12° sin 48° sin 54˚ = \(\frac{1}{8}\)

Solution:

L. H. S. = sin 12° sin 48° sin 54° 

= \(\frac{1}{2}\) (2 sin 12°sin 48°) sin (90°- 36°) 

= \(\frac{1}{2}\) [cos 36°- cos 60°] cos 36°

= \(\frac{1}{2}\) [√\(\frac{√5 + 1}{4}\) - \(\frac{1}{2}\)] \(\frac{√5 + 1}{4}\), [Since, cos 36˚ = \(\frac{√5 + 1}{4}\)]

= \(\frac{1}{2}\) ∙ \(\frac{√5 - 1}{4}\) ∙ \(\frac{√5 + 1}{4}\)

= \(\frac{4}{32}\)

= \(\frac{1}{8}\) =  R.H.S.              Proved.

 Submultiple Angles





11 and 12 Grade Math

From Problems on Submultiple Angles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Types of Fractions |Proper Fraction |Improper Fraction |Mixed Fraction

    Jul 12, 24 03:08 PM

    Fractions
    The three types of fractions are : Proper fraction, Improper fraction, Mixed fraction, Proper fraction: Fractions whose numerators are less than the denominators are called proper fractions. (Numerato…

    Read More

  2. Worksheet on Fractions | Questions on Fractions | Representation | Ans

    Jul 12, 24 02:11 PM

    Worksheet on Fractions
    In worksheet on fractions, all grade students can practice the questions on fractions on a whole number and also on representation of a fraction. This exercise sheet on fractions can be practiced

    Read More

  3. Fraction in Lowest Terms |Reducing Fractions|Fraction in Simplest Form

    Jul 12, 24 03:21 AM

    Fraction 8/16
    There are two methods to reduce a given fraction to its simplest form, viz., H.C.F. Method and Prime Factorization Method. If numerator and denominator of a fraction have no common factor other than 1…

    Read More

  4. Conversion of Improper Fractions into Mixed Fractions |Solved Examples

    Jul 12, 24 12:59 AM

    To convert an improper fraction into a mixed number, divide the numerator of the given improper fraction by its denominator. The quotient will represent the whole number and the remainder so obtained…

    Read More

  5. Conversion of Mixed Fractions into Improper Fractions |Solved Examples

    Jul 12, 24 12:30 AM

    Conversion of Mixed Fractions into Improper Fractions
    To convert a mixed number into an improper fraction, we multiply the whole number by the denominator of the proper fraction and then to the product add the numerator of the fraction to get the numerat…

    Read More