Exact Value of cos 54°

We will learn to find the exact value of cos 36 degrees using the formula of multiple angles.


How to find exact value of cos 54°?

Solution:

Let A = 18°                          

Therefore, 5A = 90°

⇒ 2A + 3A = 90˚

⇒ 2θ = 90˚ - 3A

Taking sine on both sides, we get

sin 2A = sin (90˚ - 3A) = cos 3A

⇒ 2 sin A cos A = 4 cos\(^{3}\) A - 3 cos A

⇒ 2 sin A cos A - 4 cos\(^{3}\) A + 3 cos A = 0

⇒ cos A (2 sin A - 4 cos\(^{2}\) A + 3) = 0 

Dividing both sides by cos A = cos 18˚ ≠ 0, we get

⇒ 2 sin θ - 4 (1 - sin\(^{2}\) A) + 3 = 0

⇒ 4 sin\(^{2}\) A + 2 sin A - 1 = 0, which is a quadratic in sin A

Therefore, sin θ = \(\frac{-2 \pm \sqrt{- 4 (4)(-1)}}{2(4)}\)

⇒ sin θ = \(\frac{-2 \pm \sqrt{4 + 16}}{8}\)

⇒ sin θ = \(\frac{-2 \pm 2 \sqrt{5}}{8}\)

⇒ sin θ = \(\frac{-1 \pm \sqrt{5}}{4}\)

Now sin 18° is positive, as 18° lies in first quadrant.

Therefore, sin 18° = sin A = \(\frac{-1 \pm \sqrt{5}}{4}\)

Now, cos 36° = cos 2 ∙ 18°

⇒ cos 36° = 1 - 2 sin\(^{2}\) 18°

⇒ cos 36° = 1 - 2\((\frac{\sqrt{5} - 1}{4})^{2}\)

⇒ cos 36° = \(\frac{16 - 2(5 + 1 - 2\sqrt{5})}{16}\)

⇒ cos 36° = \(\frac{1 + 4\sqrt{5}}{16}\)

⇒ cos 36° = \(\frac{\sqrt{5} + 1}{4}\)

Therefore, sin 36° = \(\sqrt{1 - cos^{2} 36°}\),[Taking sin 36° is positive, as 36° lies in first quadrant, sin 36° > 0]

⇒ sin 36° = \(\sqrt{1 - (\frac{\sqrt{5} + 1}{4})^{2}}\)

⇒ sin 36° = \(\sqrt{\frac{16 - (5 + 1 + 2\sqrt{5})}{16}}\)

⇒ sin 36° = \(\sqrt{\frac{10 - 2\sqrt{5}}{16}}\)

⇒ sin 36° = \(\frac{\sqrt{10 - 2\sqrt{5}}}{4}\)

Therefore, sin 36° = \(\frac{\sqrt{10 - 2\sqrt{5}}}{4}\)

Now cos 54° = cos (90° - 36°) = sin 36° = \(\frac{\sqrt{10 - 2\sqrt{5}}}{4}\)

Therefore, cos 54° = \(\frac{\sqrt{10 - 2\sqrt{5}}}{4}\)

 Submultiple Angles






11 and 12 Grade Math

From Exact Value of cos 54° to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Highest Common Factor | HCF | GCD|Prime Factorization Method

    Mar 24, 25 03:40 PM

    Find the H.C.F. of 12, 36, 48
    The highest common factor (H.C.F.) of two or more numbers is the highest or greatest common number or divisor which divides each given number exactly. Hence, it is also called Greatest Common Divisor…

    Read More

  2. 5th Grade Factors and Multiples | Definitions | Solved Examples | Math

    Mar 23, 25 02:39 PM

    Prime Factor of 312
    Here we will discuss how factors and multiples are related to each other in math. A factor of a number is a divisor which divides the dividend exactly. A factor of a number which is a prime number is…

    Read More

  3. Adding 2-Digit Numbers | Add Two Two-Digit Numbers without Carrying

    Mar 23, 25 12:43 PM

    Adding 2-Digit Numbers Using an Abacus
    Here we will learn adding 2-digit numbers without regrouping and start working with easy numbers to get acquainted with the addition of two numbers.

    Read More

  4. Worksheet on 12 Times Table | Printable Multiplication Table | Video

    Mar 23, 25 10:28 AM

    worksheet on multiplication of 12 times table
    Worksheet on 12 times table can be printed out. Homeschoolers can also use these multiplication table sheets to practice at home.

    Read More

  5. Vertical Subtraction | Examples | Word Problems| Video |Column Method

    Mar 22, 25 05:20 PM

    Vertical Subtraction
    Vertical subtraction of 1-digit number are done by arranging the numbers column wise i.e., one number under the other number. How to subtract 1-digit number vertically?

    Read More