We will learn to find the exact value of cos 27 degrees using the formula of submultiple angles.
How to find the exact value of cos 27°?
Solution:
We have, (sin 27° + cos 27°)\(^{2}\) = sin\(^{2}\) 27° + cos\(^{2}\) 27° + 2 sin 27° cos 27°
⇒ (sin 27° + cos 27°)\(^{2}\) = 1 + sin 2 ∙ 27°
⇒ (sin 27° + cos 27°)\(^{2}\) = 1 + sin 54°
⇒ (sin 27° + cos 27°)\(^{2}\) = 1 + sin (90° - 36°)
⇒ (sin 27° + cos 27°)\(^{2}\) = 1 + cos 36°
⇒ (sin 27° + cos 27°)\(^{2}\) = 1+ \(\frac{√5 +1}{4}\)
⇒ (sin 27° + cos 27°)\(^{2}\) = \(\frac{1}{4}\) ( 5 + √ 5)
Therefore, sin 27° + cos 27° = \(\frac{1}{2}\sqrt{5 + \sqrt{5}}\) …………….….(i)
[Since, sin 27° > 0 and cos 27° > 0)
Similarly, we
have,
(sin 27° - cos 27°)\(^{2}\) = 1 - cos 36°
⇒ (sin 27° - cos 27°)\(^{2}\) = 1 - \(\frac{√5 + 1}{4}\)
⇒ (sin 27° - cos 27°)\(^{2}\) = \(\frac{1}{4}\) (3 - √5
)
Therefore, sin 27° - cos 27° = ± \(\frac{1}{2}\sqrt{3 - \sqrt{5}}\)
…………….….(ii)
Now, sin 27° - cos 27° = √2 (\(\frac{1}{√2}\)
sin 27˚ - \(\frac{1}{√2}\) cos 27°)
= √2 (cos 45° sin 27° - sin 45° cos 27°)
= √2 sin (27° - 45°)
= -√2 sin 18° < 0
Therefore, from (ii) we get,
sin 27° - cos 27° = -\(\frac{1}{2}\sqrt{3 - \sqrt{5}}\) …………….….(iii)
Now, subtracting (iii) and (i) we get,
2 cos 27° = \(\frac{1}{2}\sqrt{5 + \sqrt{5}}\) + \(\frac{1}{2}\sqrt{3 - \sqrt{5}}\)
⇒ cos 27° = \(\frac{1}{4}(\sqrt{5 + \sqrt{5}} + \sqrt{3 - \sqrt{5}})\)
Therefore, cos 27° = \(\frac{1}{4}(\sqrt{5 + \sqrt{5}} + \sqrt{3 - \sqrt{5}})\)
11 and 12 Grade Math
From Exact Value of cos 27° to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Dec 11, 24 09:08 AM
Dec 09, 24 10:39 PM
Dec 09, 24 01:08 AM
Dec 08, 24 11:19 PM
Dec 07, 24 03:38 PM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.