# Divisibility Rules

To find out factors of larger numbers quickly, we perform divisibility test. There are certain rules to check divisibility of numbers.

In divisibility rules(test) we find whether a given number is divisible by another number, we perform actual division and see whether the remainder is zero or not.

We will recall how to apply the test for divisibility by 2, 3, 4, 5, 9 and 10.

But divisibility tests of a given number by any of the number 2, 3, 4, 5, 6, 7, 8, 9, 10 can be perform simply by examining the digits of the given number.

These tests are as under:

Divisibility by 2

A number is divisible by 2 if its units place is either 0 or multiple of 2.

In other words, a number is divisible by 2, if the digit at ones place is an even number, that is the number ends in 0, 2, 4 or 8.

For example:

346, 3818, 14626, 100, 1994, 1252

All these number is divisible by 2 because their units place in multiple of 2.

Divisibility by 3

A number is divisible by 3 if the sum of digits is a multiple of 3.

In other words, a number is divisible by 3, if sum of all its digits is divisible by 3.

For example:

79851 is divisible by 3 as the sum of its digits, i.e., 7 + 9 + 8 + 5 + 1 = 30 is divisible by 3.

Divisibility by 4

A number is divisible by 4 if the number formed by its digits in tens and units place is divisible by 4.

In other words, a number is divisible by 4, if the number formed by its last 2 digits is divisible by 4.

For example:

88312 is divisible by 4 because the number formed by its last two digits i.e., 12 is divisible by 4.

Divisibility by 5

A number is divisible by 5 if its units place is 0 or 5.

In other words, a number is divisible by 5, if it ends in 0 or 5.

For example:

75325 is divisible by 5 as its last digit is 5.

Divisibility by 6

A number is divisible by 6 if it is divisible by 2 and 3 both.

For example:

85806 is divisible by 6 because it is an even number so divisible by 2 and sum of its digits, i.e., 8 + 5 + 8 + 0 + 6 = 27 27 is divisible by 3.

Divisibility by 7

A number of 2 digits is divisible by 7 because 3 × 6 + 3 = 21. 21 is divisible by 7.

A number of three or more digits is divisible by 7 if the sum of the numbers formed by the last two digits and twice the number formed by the remaining digits is divisible by 7.

For example:

(i) 574 is divisible by 7 because 74 + 5 × 2 = 74 + 10 = 84 is divisible by 7.

(ii) 2268 is divisible by 7 because 68 + 22 × 2 = 68 + 44 = 112 is divisible by 7.

Alternate method for divisible by 7:

To check whether a number is divisible by 7, we take the last digit of the number and double it. Subtract this new number from the truncated number formed by the remaining digits and continue this process until only one digit remains. If the digit is 0 or 7, then the given number is divisible by 7.

For example:

Is 5502 divisible by 7?

Solution:

5502

Double the last or unit digit i.e., 4

Subtract 4 from the remaining number

550 – 4 = 546

Double the last or unit digit i.e., 12

Subtract 12 from the remaining number

54 – 12 = 42

Double the last or unit digit i.e., 4

Subtract 4 from the remaining number

4 – 4 = 0

Therefore, 5502 is divisible by 7.

Divisibility by 8.

A number is divisible by 8 if the numbers formed by the last three digits is divisible by 8.

For example:

54136 is divisible by 8 because if the numbers formed by the last three digits i.e., 136 is exactly divisible by 8.

136 ÷ 8 = 17, Remainder = 0

Divisibility by 9

A number is divisible by 9 if the sum of its digits is divisible by 9.

For example:

3888 is divisible by 9 because 3 + 8 + 8 + 8 = 27 is divisible by 9.

Divisibility by 10.

A number is divisible by 10 if it has zero (0) in its units place.

In other words, a number is divisible by 10, if all numbers ends in 0.

For example:

80, 210, 790, 9990, 1000, 2658970 are divisible by 10 because all numbers ends in 0.

Divisibility by 11.

A number is divisible by 11 if the sum of the digits in the odd places and the sum of the digits in the even places difference is a multiple of 11 or zero.

For example: Sum of the digits in the even places = 5 + 9 + 8 = 22

Sum of the digits in the odd places = 5 + 1 + 3 + 2 =11

Difference between the two sums = 22 – 11= 11

11 is divisible by 11.

Hence, 2839155 is divisible by 11.

In other words,

To check whether a number is divisible by 11, we find the sum of the digits in the even places and the odd places separately. Now, check the difference between the two sums if it is 0 or divisible by 11, then the given number is divisible by 11.

For example:

Is 5676 divisible by 11?

Solution:

Sum of digits in even places = 6 + 6 = 12

Sum of digits in odd places = 5 + 7 = 12

Difference = 0

Therefore, 5676 is divisible by 11.

Notes:

A number is divisible by another number if it is also by its co-prime factors.

The co-prime factors of 15 are 3 and 5.

Divisibility by 12:

A number is divisible by 12, if it is divisible by co-prime 12 i.e., 3 and 4.

For example:

5436 is divisible by 12 because it is divisible by both 3 and 4.

5436 ÷ 3 = 1812, Remainder = 0

Again, 5436 ÷ 4 = 1359, Remainder = 0

Divisibility by 13:

Divisibility by 15:

A number is divisible by 15, if it is divisible by co-prime 15 i.e., 3 and 5.

For example:

1875 is divisible by 15 because it is divisible by both 3 and 5.

1875 ÷ 3 = 625, Remainder = 0

Again, 1875 ÷ 5 = 375, Remainder = 0

Divisibility by 18:

A number is divisible by 18, if it is divisible by co-prime 18 i.e., 2 and 9.

For example:

2322 is divisible by 18 because it is divisible by both 2 and 9.

2322 ÷ 2 = 1161, Remainder = 0

Again, 2322 ÷ 9 = 258, Remainder = 0

Divisibility by 45:

A number is divisible by 45, if it is divisible by co-prime 45 i.e., 5 and 9.

For example:

5805 is divisible by 45 because it is divisible by both 5 and 9.

5805 ÷ 5 = 1161, Remainder = 0

Again, 5805 ÷ 9 = 645, Remainder = 0

## You might like these

• ### Method of H.C.F. |Highest Common Factor|Factorization &Division Method

We will discuss here about the method of h.c.f. (highest common factor). The highest common factor or HCF of two or more numbers is the greatest number which divides exactly the given numbers. Let us consider two numbers 16 and 24.

• ### 4th Grade Factors and Multiples Worksheet | Factors & Multiples

In 4th grade factors and multiples worksheet we will find the factors of a number by using multiplication method, find the even and odd numbers, find the prime numbers and composite numbers, find the prime factors, find the common factors, find the HCF(highest common factors

• ### Examples on Multiples | Different Types of Questions on Multiples

Examples on multiples on different types of questions on multiples are discussed here step-by-step. Every number is a multiple of itself. Every number is a multiple of 1. Every multiple of a number is either greater than or equal to the number. Product of two or more numbers

• ### Worksheet on Word Problems on H.C.F. and L.C.M. |Highest Common Factor

In worksheet on word problems on H.C.F. and L.C.M. we will find the greatest common factor of two or more numbers and the least common multiple of two or more numbers and their word problems. I. Find the highest common factor and least common multiple of the following pairs

• ### Word Problems on L.C.M. | L.C.M. Word Problems | Questions on LCM

Let us consider some of the word problems on l.c.m. (least common multiple). 1. Find the lowest number which is exactly divisible by 18 and 24. We find the L.C.M. of 18 and 24 to get the required number.

• ### Word Problems on H.C.F | H.C.F. Word Problems | Highest Common Factor

Let us consider some of the word problems on H.C.F. (highest common factor). 1. Two wires are 12 m and 16 m long. The wires are to be cut into pieces of equal length. Find the maximum length of each piece. 2.Find the greatest number which is less by 2 to divide 24, 28 and 64

• ### Least Common Multiple |Lowest Common Multiple|Smallest Common Multiple

The least common multiple (L.C.M.) of two or more numbers is the smallest number which can be exactly divided by each of the given number. The lowest common multiple or LCM of two or more numbers is the smallest of all common multiples.

• ### Common Multiples | How to Find Common Multiples of Two Numbers?

Common multiples of two or more given numbers are the numbers which can exactly be divided by each of the given numbers. Consider the following. (i) Multiples of 3 are: 3, 6, 9, 12, 15, 18, 21, 24, …………etc. Multiples of 4 are: 4, 8, 12, 16, 20, 24, 28, …………… etc.

• ### Worksheet on Multiples | Questions on Multiples | Exercise Sheet

In worksheet on multiples of that numbers, all grade students can practice the questions on multiples. This exercise sheet on multiples can be practiced by the students to get more ideas on the numbers that are being multiplied. 1. Write any four multiples of: 7

• ### Prime Factorisation |Complete Factorisation |Tree Factorisation Method

Prime factorisation or complete factorisation of the given number is to express a given number as a product of prime factor. When a number is expressed as the product of its prime factors, it is called prime factorization. For example, 6 = 2 × 3. So 2 and 3 are prime factors

• ### Prime Factors | Prime Factors of a Number | First Prime Number | Prime

Prime factor is the factor of the given number which is a prime number also. How to find the prime factors of a number? Let us take an example to find prime factors of 210. We need to divide 210 by the first prime number 2 we get 105. Now we need to divide 105 by the prime

• ### Properties of Multiples | With Examples | Multiple of each Factor

The properties of multiples are discussed step by step according to its property. Every number is a multiple of 1. Every number is the multiple of itself. Zero (0) is a multiple of every number. Every multiple except zero is either equal to or greater than any of its factors

• ### Multiples | Multiples of a Number |Common Multiple|First Ten Multiples

What are multiples? ‘The product obtained on multiplying two or more whole numbers is called a multiple of that number or the numbers being multiplied.’ We know that when two numbers are multiplied the result is called the product or the multiple of given numbers.

• ### Worksheet on H.C.F. | Word Problems on H.C.F. | H.C.F. Worksheet | Ans

Practice the questions given in the worksheet on hcf (highest common factor) by factorization method, prime factorization method and division method. Find the common factors of the following numbers. (i) 6 and 8 (ii) 9 and 15 (iii) 16 and 18 (iv) 16 and 28

• ### To find Highest Common Factor by using Division Method | Method

In this method we first divide the greater number by the smaller number. The remainder becomes the new divisor and the previous divisor as the new dividend. We continue the process until we get 0 remainder. Finding highest common factor (H.C.F) by prime factorization for

Properties of Divisibility.

Divisible by 2.

Divisible by 3.

Divisible by 4.

Divisible by 5.

Divisible by 6.

Divisible by 7.

Divisible by 8.

Divisible by 9.

Divisible by 10.

Divisible by 11.

Problems on Divisibility Rules

Worksheet on Divisibility Rules