# Divisible by 11

Divisible by 11 is discussed below.

A number is divisible by 11 if the sum of the digits in the odd places and the sum of the digits in the even places difference is a multiple of 11 or zero.

Consider the following numbers which are divisible by 11, using the test of divisibility by 11:

(i) 154, (ii) 814, (iii) 957, (iv) 1023, (v) 1122, (vi) 1749, (vii) 53856, (viii) 592845, (ix) 5048593, (x) 98521258.

(i) 154

Sum of the digits in the even place (Red Color)  = 5

Sum of the digits in the odd places (Black Color) = 1 + 5 = 6

Difference between the two sums = 5 - 6 = – 1

-1 is divisible by 11.

Hence, 154 is divisible by 11.

(ii) 814

Sum of the digits in the even place (Red Color)  = 1

Sum of the digits in the odd places (Black Color) = 8 + 4 = 12

Difference between the two sums = 1 - 12 = – 11

-11 is divisible by 11.

Hence, 814 is divisible by 11.

(iii) 957

Sum of the digits in the even place (Red Color)  = 5

Sum of the digits in the odd places (Black Color) = 9 + 7 = 16

Difference between the two sums = 5 - 16 = – 11

-11 is divisible by 11.

Hence, 957 is divisible by 11.

(iv) 1023

Sum of the digits in the even places (Red Color)  = 0 + 3 = 3

Sum of the digits in the odd places (Black Color) = 1 + 2 = 3

Difference between the two sums = 3 - 3 = 0

0 is divisible by 11.

Hence, 1023 is divisible by 11.

(v) 1122

Sum of the digits in the even places (Red Color)  = 1 + 2 = 3

Sum of the digits in the odd places (Black Color) = 1 + 2 = 3

Difference between the two sums = 3 - 3 = 0

0 is divisible by 11.

Hence, 1122 is divisible by 11.

(vi) 1749

Sum of the digits in the even places (Red Color)  = 7 + 9 = 16

Sum of the digits in the odd places (Black Color) = 1 + 4 = 5

Difference between the two sums = 16 - 5 = 11

11 is divisible by 11.

Hence, 1749 is divisible by 11.

(vii) 53856

Sum of the digits in the even places (Red Color)  = 3 + 5 = 8

Sum of the digits in the odd places (Black Color) = 5 + 8 + 6 = 19

Difference between the two sums = 8 - 19 = -11

-11 is divisible by 11.

Hence, 53856 is divisible by 11.

(viii) 592845

Sum of the digits in the even places (Red Color) = 9 + 8 + 5 = 22

Sum of the digits in the odd places (Black Color) = 5 + 2 + 4 = 11

Difference between the two sums = 22 - 11 = 11

11 is divisible by 11.

Hence, 592845 is divisible by 11.

(ix) 5048593

Sum of the digits in the even places (Red Color) = 0 + 8 + 9 = 17

Sum of the digits in the odd places (Black Color) = 5 + 4 + 5 + 3 = 17

Difference between the two sums = 17 - 17 = 0

0 is divisible by 11.

Hence, 5048593 is divisible by 11.

(x) 98521258

Sum of the digits in the even places (Red Color) = 8 + 2 + 2 + 8 = 20

Sum of the digits in the odd places (Black Color) = 9 + 5 + 1 + 5 = 20

Difference between the two sums = 20 - 20 = 0

0 is divisible by 11.

Hence, 98521258 is divisible by 11.

To check whether a number is divisible by 11, we find the sum of the digits in the even places and the odd places separately. Now, check the difference between the two sums if it is 0 or divisible by 11, then the given number is divisible by 11.

For example:

1. Is 852346 divisible by 11?

Solution:

Sum of digits in even places (Red Color) = 5 + 3 + 6 = 14

Sum of digits in odd places (Black Color) = 8 + 2 + 4 = 14

Difference = 14 - 14 = 0

Therefore, 852346 is divisible by 11.

2. Is 85932 divisible by 11?

Solution:

Sum of digits in even places (Red Color) = 5 + 3 = 8

Sum of digits in odd places (Black Color) = 8 + 9 + 2 = 19

Difference = 8 - 19 = -11

-11 is divisible by 11.

Therefore, 85932 is divisible by 11.

● Check the divisibility of the given numbers by 11.

(i) 45982

(ii) 694201

(iii) 102742

(iv) 73953

(v) 326117

(vi) 5676

Answer: (i) 45982 is not divisible by 11.

(ii) 694201 is not divisible by 11.

(iii) 102742 is not divisible by 11.

(iv) 73953 is divisible by 11.

(v) 326117 is divisible by 11.

(vi) 5676 is divisible by 11.

## You might like these

• ### Divisible by 9 | Test of Divisibility by 9 |Rules of Divisibility by 9

A number is divisible by 9, if the sum is a multiple of 9 or if the sum of its digits is divisible by 9. Consider the following numbers which are divisible by 9, using the test of divisibility by 9:

• ### Divisible by 4 | Test of Divisibility by 4 |Rules of Divisibility by 4

A number is divisible by 4 if the number is formed by its digits in ten’s place and unit’s place (i.e. the last two digits on its extreme right side) is divisible by 4. Consider the following numbers which are divisible by 4 or which are divisible by 4, using the test of

• ### Divisibility Rules | Divisibility Test|Divisibility Rules From 2 to 18

To find out factors of larger numbers quickly, we perform divisibility test. There are certain rules to check divisibility of numbers. Divisibility tests of a given number by any of the number 2, 3, 4, 5, 6, 7, 8, 9, 10 can be perform simply by examining the digits of the

• ### Worksheet on Multiples and Factors | Prime Number or Composite Number

Worksheet on multiples and factors contains various types of questions. We know, 1 is a factor of every number. And, a multiple of a number is always greater than or equal to the number. We have the basic ideas about multiples, factors, prime numbers and composite numbers.