Position of a Point with Respect to a Circle

We will learn how to find the position of a point with respect to a circle.

A point (x\(_{1}\), y\(_{1}\)) lies outside, on or inside a circle S = x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 according as S\(_{1}\) > = or <0, where S\(_{1}\) = x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c.

Let P (x\(_{1}\), y\(_{1}\)) be a given point, C (-g , -f) be the centre and a be the radius of the given circle.

We need to find the position of the point P (x\(_{1}\), y\(_{1}\)) with respect to the circle S = x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0.

Now, CP = \(\mathrm{\sqrt{(x_{1} + g)^{2} + (y_{1} + f)^{2}}}\)

Therefore, the point

(i) P lies outside the circle x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 if CP > the radius of the circle.

i.e., \(\mathrm{\sqrt{(x_{1} + g)^{2} + (y_{1} + f)^{2}}}\) > \(\mathrm{\sqrt{g^{2} + f^{2} - c}}\)

⇒ \(\mathrm{(x_{1} + g)^{2} + (y_{1} + f)^{2}}\) > g\(^{2}\) + f\(^{2}\) - c

⇒ x\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + g\(^{2}\) + y\(_{1}\)\(^{2}\) + 2fy\(_{1}\) + f\(^{2}\) > g\(^{2}\) + f\(^{2}\) – c

⇒ x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c > 0

⇒ S\(_{1}\) > 0, where S\(_{1}\) = x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c.

 

(ii) P lies on the circle x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 if CP = 0.

i.e., \(\mathrm{\sqrt{(x_{1} + g)^{2} + (y_{1} + f)^{2}}}\) = \(\mathrm{\sqrt{g^{2} + f^{2} - c}}\)

⇒ \(\mathrm{(x_{1} + g)^{2} + (y_{1} + f)^{2}}\) = g\(^{2}\) + f\(^{2}\) - c

⇒ x\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + g\(^{2}\) + y\(_{1}\)\(^{2}\) + 2fy\(_{1}\) + f\(^{2}\) = g\(^{2}\) + f\(^{2}\) – c

⇒ x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c = 0

⇒ S\(_{1}\) = 0, where S\(_{1}\) = x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c.

 

(iii) P lies inside the circle x\(^{2}\) + y\(^{2}\) + 2gx + 2fy + c = 0 if CP < the radius of the circle.

i.e., \(\mathrm{\sqrt{(x_{1} + g)^{2} + (y_{1} + f)^{2}}}\) < \(\mathrm{\sqrt{g^{2} + f^{2} - c}}\)

⇒ \(\mathrm{(x_{1} + g)^{2} + (y_{1} + f)^{2}}\) < g\(^{2}\) + f\(^{2}\) - c

⇒ x\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + g\(^{2}\) + y\(_{1}\)\(^{2}\) + 2fy\(_{1}\) + f\(^{2}\) < g\(^{2}\) + f\(^{2}\) – c

⇒ x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c < 0

⇒ S\(_{1}\) < 0, where S\(_{1}\) = x\(_{1}\)\(^{2}\) + y\(_{1}\)\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c.

Again, if the equation of the given circle be (x - h)\(^{2}\) + (y - k)\(^{2}\) = a\(^{2}\) then the coordinates of the centre C (h, k) and the radius of the circle = a

We need to find the position of the point P (x\(_{1}\), y\(_{1}\)) with respect to the circle (x - h)\(^{2}\) + (y - k)\(^{2}\)= a\(^{2}\).

Therefore, the point

(i) P lies outside the circle (x - h)\(^{2}\) + (y - k)\(^{2}\) = a\(^{2}\) if CP > the radius of the circle

i.e., CP > a

⇒ CP\(^{2}\) > a\(^{2}\)

⇒ (x\(_{1}\) - h)\(^{2}\) + (y\(_{1}\) - k)\(^{2}\) > a\(^{2}\)


(ii) P lies on the circle (x - h)\(^{2}\) + (y - k)\(^{2}\) = a\(^{2}\) if CP = the radius of the circle

i.e., CP = a

⇒ CP\(^{2}\) = a\(^{2}\)

⇒ (x\(_{1}\) - h)\(^{2}\) + (y\(_{1}\) - k)\(^{2}\) = a\(^{2}\)


(iii) P lies inside the circle (x - h)\(^{2}\) + (y - k)\(^{2}\) = a\(^{2}\) if CP < the radius of the circle

i.e., CP < a

⇒ CP\(^{2}\) < a\(^{2}\)

⇒ (x\(_{1}\) - h)\(^{2}\) + (y\(_{1}\) - k)\(^{2}\) < a\(^{2}\)

 

Solved examples to find the position of a point with respect to a given circle:

1. Prove that the point (1, - 1) lies within the circle x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 = 0, whereas the point (-1, 2) is outside the circle.

Solution:

We have x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 = 0 ⇒ S = 0, where S = x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4

For the point (1, -1), we have S\(_{1}\) = 1\(^{2}\) + (-1)\(^{2}\) - 4 ∙1 + 6 ∙ (- 1) + 4 = 1 + 1 - 4 - 6 + 4 = - 4 < 0

For the point (-1, 2), we have S\(_{1}\) = (- 1 )\(^{2}\) + 2\(^{2}\) - 4 ∙ (-1) +  6 ∙ 2 + 4 = 1 + 4 + 4 + 12 + 4 = 25 > 0

Therefore, the point (1, -1) lies inside the circle whereas (-1, 2) lies outside the circle.

 

2. Discuss the position of the points (0, 2) and (- 1, - 3) with respect to the circle x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 = 0.

Solution:

We have x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 = 0 ⇒ S = 0 where S = x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4

For the point (0, 2):

Putting x = 0 and y = 2 in the expression x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 we have,

S\(_{1}\) = 0\(^{2}\) + 2\(^{2}\) - 4 ∙ 0 + 6 ∙ 2 + 4 = 0 + 4 – 0 + 12 + 4 = 20, which is positive.

Therefore, the point (0, 2) lies within the given circle.

For the point (- 1, - 3):

Putting x = -1 and y = -3 in the expression x\(^{2}\) + y\(^{2}\) - 4x + 6y + 4 we have,

S\(_{1}\) = (- 1)\(^{2}\) + (- 3)\(^{2}\) - 4 ∙ (- 1) + 6 ∙ (- 3) + 4 = 1 + 9 + 4 - 18 + 4 = 18 - 18 = 0.

Therefore, the point (- 1, - 3) lies on the given circle.

 The Circle




11 and 12 Grade Math 

From Position of a Point with Respect to a Circle to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 18, 24 02:58 AM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More

  2. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Apr 18, 24 02:15 AM

    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More

  3. Simple Closed Curves | Types of Closed Curves | Collection of Curves

    Apr 18, 24 01:36 AM

    Closed Curves Examples
    In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

    Read More

  4. Tangrams Math | Traditional Chinese Geometrical Puzzle | Triangles

    Apr 18, 24 12:31 AM

    Tangrams
    Tangram is a traditional Chinese geometrical puzzle with 7 pieces (1 parallelogram, 1 square and 5 triangles) that can be arranged to match any particular design. In the given figure, it consists of o…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Apr 17, 24 01:32 PM

    Duration of Time
    We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton every evening. Yesterday, their game started at 5 : 15 p.m.

    Read More