# Exact Value of sin 22½°

How to find the exact value of sin 22½° using the value of cos 45°?

Solution:

22½° lies in the first quadrant.

Therefore, sin 22½° is positive.

For all values of the angle A we know that, cos A = 1 - 2 sin$$^{2}$$ $$\frac{A}{2}$$

⇒ 1 - cos A = 2 sin$$^{2}$$ $$\frac{A}{2}$$

⇒ 2 sin$$^{2}$$ $$\frac{A}{2}$$ = 1 - cos A

⇒ 2 sin$$^{2}$$ 22½˚ = 1 - cos 45°

⇒ sin$$^{2}$$ 22½˚ = $$\frac{1 - cos 45°}{2}$$

⇒ sin$$^{2}$$ 22½˚ = $$\frac{1 - \frac{1}{\sqrt{2}}}{2}$$, [Since we know cos 45° = $$\frac{1}{√2}$$]

⇒ sin 22½˚ = $$\sqrt{\frac{1}{2}(1 - \frac{1}{\sqrt{2}})}$$, [Since, sin 22½˚ > 0]

⇒ sin 22½˚ = $$\sqrt{\frac{\sqrt{2} - 1}{2\sqrt{2}}}$$

⇒ sin 22½˚ = $$\frac{1}{2}\sqrt{2 - \sqrt{2}}$$

Therefore, sin 22½˚ = $$\frac{1}{2}\sqrt{2 - \sqrt{2}}$$

`

### New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.