tan θ = tan ∝

How to find the general solution of an equation of the form tan θ = tan ∝?

Prove that the general solution of tan θ = tan ∝ is given by θ = nπ +∝, n ∈ Z.

Solution:

We have,

tan θ = tan ∝

⇒ sin θ/cos θ - sin ∝/cos ∝ = 0

⇒ (sin θ cos ∝ - cos θ sin ∝)/cos θ cos ∝ = 0

⇒ sin (θ - ∝)/cos θ cos ∝ = 0

⇒ sin (θ - ∝) = 0

⇒ sin (θ - ∝) = 0

⇒ (θ - ∝) = nπ, where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3,…….), [Since we know that the θ = nπ, n ∈ Z is the general solution of the given equation sin θ = 0]

⇒ θ = nπ + ∝, where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3,…….)

Hence, the general solution of tan θ = tan ∝ is θ = nπ + , where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3,…….)

Note: The equation cot θ = cot ∝ is equivalent to tan θ = tan ∝ (since, cot θ = 1/tan θ and cot ∝ = 1/tan ∝). Thus, cot θ = cot ∝ and tan θ = tan ∝ have the same general solution.

Hence, the general solution of cot θ = cot ∝ is θ = nπ + , where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3,…….)


1. Solve the trigonometric equation tan θ = \(\frac{1}{√3}\)

Solution:

tan θ = \(\frac{1}{√3}\)

⇒ tan θ = tan \(\frac{π}{6}\)

⇒ θ = nπ + \(\frac{π}{6}\), where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3,…….), [Since, we know that the general solution of tan θ = tan ∝ is θ = nπ + ∝, where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3,…….)]


2. What is the general solution of the trigonometric equation tan x + tan 2x + tan x tan 2x = 1?

Solution:

tan x + tan 2x + tan x tan 2x = 1

tan x + tan 2x = 1 - tan x tan 2x

\(\frac{tan x  +  tan 2x}{1  -  tan x tan 2x}\) = 1

tan 3x = 1

tan 3x = tan \(\frac{π}{4}\)

3x = nπ + \(\frac{π}{4}\), where n = 0, ± 1, ± 2, ± 3,…….

x = \(\frac{nπ}{3}\) + \(\frac{π}{12}\), where n = 0, ± 1, ± 2, ± 3,…….

Therefore, the general solution of the trigonometric equation tan x + tan 2x + tan x tan 2x = 1 is x = \(\frac{nπ}{3}\) + \(\frac{π}{12}\), where n = 0, ± 1, ± 2, ± 3,…….


3. Solve the trigonometric equation tan 2θ = √3

Solution:

tan 2θ = √3

⇒ tan 2θ = tan \(\frac{π}{3}\)

⇒ 2θ = nπ + \(\frac{π}{3}\), where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3,…….), [Since, we know that the general solution of tan θ = tan ∝ is θ = nπ + ∝, where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3,…….)]

⇒ θ = \(\frac{nπ}{2}\) + \(\frac{π}{6}\), where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3,…….)

Hence, the general solution of tan 2θ = √3 is θ = \(\frac{nπ}{2}\) + \(\frac{π}{6}\), where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3,…….)


4. Find the general solution of the trigonometric equation 2 tan x - cot x + 1 = 0

Solution:

2 tan x - cot x + 1 = 0

⇒ 2 tan x - \(\frac{1}{tan x }\) + 1 = 0

⇒ 2 tan\(^{2}\) x + tan x - 1 = 0

⇒ 2 tan\(^{2}\) x + 2tan x - tan x - 1 = 0

⇒ 2 tan x(tan x + 1) - 1(tan x + 1) = 0

⇒ (tan x + 1)(2 tan x - 1) = 0

⇒ either tan x + 1 = or, 2 tan x - 1 = 0

⇒ tan x = -1 or, tan x  = \(\frac{1}{2}\)

⇒ tan x = (\(\frac{-π}{4}\)) or, tan x  = tan α, where tan α = \(\frac{1}{2}\)

⇒ x = nπ + (\(\frac{-π}{4}\)) or, x = mπ + α, where tan α = \(\frac{1}{2}\) and m = 0, ± 1, ± 2, ± 3,…….

⇒ x = nπ - (\(\frac{π}{4}\)) or, x = mπ + α, where tan α = \(\frac{1}{2}\) and m = 0, ± 1, ± 2, ± 3,…….

Therefore the solution of the trigonometric equation 2 tan x - cot x + 1 = 0 are x = nπ - (\(\frac{π}{4}\))  and x = mπ + α, where tan α = \(\frac{1}{2}\) and m = 0, ± 1, ± 2, ± 3,…….


5. Solve the trigonometric equation tan 3θ  + 1 = 0

Solution:

tan 3θ  + 1 = 0

tan 3θ  = - 1

⇒ tan 3θ = tan (-\(\frac{π}{4}\))

⇒ 3θ = nπ + (-\(\frac{π}{4}\)), where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3,…….), [Since, we know that the general solution of tan θ = tan ∝ is θ = nπ + ∝, where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3,…….)]

⇒ θ = \(\frac{nπ}{3}\) - \(\frac{π}{12}\), where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3,…….)

Hence, the general solution of tan 3θ  + 1 = 0 is θ = \(\frac{nπ}{3}\) - \(\frac{π}{12}\), where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3,…….)

 Trigonometric Equations








11 and 12 Grade Math

From tan θ = tan ∝ to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 10, 24 02:35 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More