sin θ = sin ∝

How to find the general solution of an equation of the form sin θ = sin ∝?

Prove that the general solution of sin θ = sin ∝ is given by θ = nπ + (-1)\(^{n}\) ∝, n ∈ Z.

Solution:

We have,

sin θ = sin ∝            

⇒ sin θ - sin ∝ = 0 

⇒ 2 cos \(\frac{θ  +  ∝}{2}\) sin \(\frac{θ  -  ∝}{2}\) = 0

Therefore either cos \(\frac{θ  +  ∝}{2}\) = 0 or, sin \(\frac{θ  -  ∝}{2}\) = 0

Now, from cos \(\frac{θ  +  ∝}{2}\) = 0 we get, \(\frac{θ  +  ∝}{2}\) = (2m + 1)\(\frac{π}{2}\), m ∈ Z

⇒ θ = (2m + 1)π - ∝, m ∈ Z i.e., (any odd multiple of π) - ∝ ……………….(i)

And from sin \(\frac{θ  -  ∝}{2}\) = 0 we get,

\(\frac{θ  -  ∝}{2}\) = mπ, m ∈ Z                  

⇒ θ = 2mπ + ∝, m ∈ Z i.e., (any even multiple of π) + ∝ …………………….(ii)

Now combining the solutions (i) and (ii) we get,

θ = nπ + (-1)\(^{n}\) , where n ∈ Z.

Hence, the general solution of sin θ = sin ∝ is θ = nπ + (-1)\(^{n}\) , where n ∈ Z.

Note: The equation csc θ = csc ∝ is equivalent to sin θ = sin ∝ (since, csc θ = \(\frac{1}{sin  θ}\) and csc ∝ = \(\frac{1}{sin  ∝}\)). Thus, csc θ = csc ∝ and sin θ = sin ∝ have the same general solution.

Hence, the general solution of csc θ = csc ∝ is θ = nπ + (-1)\(^{n}\) , where n ∈ Z.


1. Find the general values of x which satisfy the equation sin 2x = -\(\frac{1}{2}\)

solution:

sin 2x = -\(\frac{1}{2}\)

sin 2x = - sin \(\frac{π}{6}\)

⇒ sin 2x = sin (π + \(\frac{π}{6}\))

⇒ sin 2x = sin \(\frac{7π}{6}\)

⇒ 2x = nπ + (-1)\(^{n}\) \(\frac{7π}{6}\), n ∈ Z

⇒ x = \(\frac{nπ}{2}\) + (-1)\(^{n}\) \(\frac{7π}{12}\), n ∈ Z

Therefore the general solution of sin 2x = -\(\frac{1}{2}\) is x = \(\frac{nπ}{2}\) + (-1)\(^{n}\) \(\frac{7π}{12}\), n ∈ Z


2. Find the general solution of the trigonometric equation sin 3θ = \(\frac{√3}{2}\).

Solution:

sin 3θ = \(\frac{√3}{2}\)

⇒ sin 3θ = sin \(\frac{π}{3}\)

⇒ 3θ = = nπ + (-1)\(^{n}\) \(\frac{π}{3}\), where, n = 0, ± 1, ± 2, ± 3, ± 4 .....

⇒ θ = \(\frac{nπ}{3}\) + (-1)\(^{n}\) \(\frac{π}{9}\),where, n = 0, ± 1, ± 2, ± 3, ± 4 .....

Therefore the general solution of sin 3θ = \(\frac{√3}{2}\) is θ = \(\frac{nπ}{3}\) + (-1)\(^{n}\) \(\frac{π}{9}\), where, n = 0, ± 1, ± 2, ± 3, ± 4 .....


3. Find the general solution of the equation csc θ = 2

Solution:

csc θ = 2

⇒ sin θ = \(\frac{1}{2}\)

⇒ sin θ = sin \(\frac{π}{6}\)

⇒ θ = nπ + (-1)\(^{n}\) \(\frac{π}{6}\), where, n ∈ Z, [Since, we know that the general solution of the equation sin θ = sin ∝ is θ = 2nπ + (-1)\(^{n}\) ∝, where n = 0, ± 1, ± 2, ± 3, ……. ]

Therefore the general solution of csc θ = 2 is θ = nπ + (-1)\(^{n}\) \(\frac{π}{6}\), where, n ∈ Z


4. Find the general solution of the trigonometric equation sin\(^{2}\) θ = \(\frac{3}{4}\).

Solution:

sin\(^{2}\) θ = \(\frac{3}{4}\).

sin θ = ± \(\frac{√3}{2}\)

sin θ = sin (± \(\frac{π}{3}\))

θ = nπ + (-1)\(^{n}\) ∙ (±\(\frac{π}{3}\)), where, n ∈ Z

θ = nπ ±\(\frac{π}{3}\), where, n ∈ Z

Therefore the general solution of sin\(^{2}\) θ = \(\frac{3}{4}\) is θ = nπ ±\(\frac{π}{3}\), where, n ∈ Z

 Trigonometric Equations





11 and 12 Grade Math

From sin θ = sin ∝ to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 09:20 AM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More