Trigonometric Equation using Formula

We will learn how to solve trigonometric equation using formula.

Here we will use the following formulas to get the solution of the trigonometric equations.

(a) If sin θ = 0 then θ = nπ, where n = 0, ± 1, ± 2, ± 3, …….

(b) If cos θ = 0 then θ = (2n + 1) \(\frac{π}{2}\), where n = 0, ± 1, ± 2, ± 3, …….

(c) If cos θ = cos ∝ then θ = 2nπ ± ∝, where n = 0, ± 1, ± 2, ± 3, …….

(d) If sin θ = sin ∝ then θ = n π + (-1) \(^{n}\) ∝, where n = 0, ± 1, ± 2, ± 3, …….

(e) If a cos θ + b sin θ = c then θ  = 2nπ + ∝ ±  β, where cos β = \(\frac{c}{\sqrt{a^{2}  +  b^{2}}}\), cos ∝ = \(\frac{a}{\sqrt{a^{2}  +  b^{2}}}\) and sin ∝ = \(\frac{b}{\sqrt{a^{2}  +  b^{2}}}\), where n = 0, ± 1, ± 2, ± 3, …….

1. Solve tan x + sec x = √3. Also find values of x between 0° and 360°.

Solution:

tan x + sec x = √3

⇒ \(\frac{sin x}{cos x}\) + \(\frac{1}{cos x}\) = √3, where cos x ≠ 0

⇒ sin x + 1 = √3 cos x

⇒ √3 cos x - sin x = 1,

This trigonometric equation is of the form a cos θ + b sin θ = c where a = √3, b = -1 and c = 1.

⇒ Now dividing both sides by \(\sqrt{(\sqrt{3})^{2} + (1)^{2}}\)

⇒ \(\frac{√3}{2}\) cos x - \(\frac{1}{2}\)sin x = \(\frac{1}{2}\)

⇒ cos x cos \(\frac{π}{4}\) – sin x sin \(\frac{π}{6}\) = cos \(\frac{π}{3}\)

⇒ cos (x + \(\frac{π}{6}\)) = cos \(\frac{π}{3}\)

⇒ x + \(\frac{π}{6}\) = 2nπ ± \(\frac{π}{3}\), where n = 0, ± 1, ± 2, ± 3, …….

⇒ x = 2nπ ± \(\frac{π}{3}\) - \(\frac{π}{6}\), where n = 0, ± 1, ± 2, ± 3, …….

When we take minus sign with \(\frac{π}{3}\), we get

x = 2nπ - \(\frac{π}{3}\) - \(\frac{π}{6}\)

⇒ x = 2nπ - \(\frac{π}{2}\), so that cos x = cos (2nπ - \(\frac{π}{2}\)) = cos \(\frac{π}{2}\) = 0, which spoils the assumption cos x  ≠ 0 (otherwise the given equation would be meaningless).

So, x = 2nπ + \(\frac{π}{3}\) - \(\frac{π}{6}\), where n = 0, ± 1, ± 2, ± 3, …….

⇒ x = 2nπ + \(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, ……. is the general

solution of the given equation tan x + sec x = √3.

The only solution between 0° and 360° is x = \(\frac{π}{6}\) = 30°


2. Find the general solutions of θ which satisfy the equation sec θ = - √2

Solution:   

sec θ = -  √2

⇒ cos θ = - \(\frac{1}{√2}\)

⇒ cos θ = - cos \(\frac{π}{4}\)

⇒ cos θ = cos (π - \(\frac{π}{4}\))

⇒ cos θ = cos \(\frac{3π}{4}\)

⇒ θ = 2nπ ± \(\frac{3π}{4}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solutions of θ which satisfy the equation sec θ = - √2 is θ = 2nπ ± \(\frac{3π}{4}\), where, n = 0, ± 1, ± 2, ± 3, …….


3. Solve the equation 2 cos\(^{2}\) x + 3 sin x = 0

Solution:

2 cos\(^{2}\) x + 3 sin x = 0

⇒ 2(1 - sin\(^{2}\) x) + 3 sin x = 0

⇒ 2 – 2 sin\(^{2}\) x + 3 sin x = 0

⇒ 2 sin\(^{2}\) x – 3 sin x – 2 = 0

⇒ 2 sin\(^{2}\) x - 4 sin x + sin x – 2 = 0

⇒ 2 sin x(sin x - 2) + 1(sin – 2) = 0

⇒ (sin x - 2)(2 sin x + 1) = 0

⇒ Either sin x - 2 =0 or 2 sin x + 1 = 0

But sin x – 2 = 0 i.e., sin x = 2, which is not possible.

Now form 2 sin x + 1 = 0 we get

⇒ sin x = -½ 

⇒ sin x =- sin \(\frac{π}{6}\)

⇒ sin x = sin (π + \(\frac{π}{6}\))

⇒ sin x = sin \(\frac{7π}{6}\)

⇒ x = nπ + (1)\(^{n}\)\(\frac{7π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the solution for the equation 2 cos\(^{2}\) x + 3 sin x = 0 is x = nπ + (1)\(^{n}\)\(\frac{7π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

Note: In the above trig equation we observe that there is more than one trigonometric function. So, the identities (sin \(^{2}\) θ + cos \(^{2}\) θ = 1) are required to reduce the given equation to a single function.

4. Find the general solutions of cos x + sin x = cos 2x + sin 2x

Solution:

cos x + sin x = cos 2x + sin 2x

⇒cos x - cos 2x - sin 2x + sin x = 0

⇒  (cos x - cos 2x) - (sin 2x - sin x) = 0

⇒  2 sin \(\frac{3x}{2}\) sin \(\frac{x}{2}\) - 2 cos \(\frac{3x}{2}\) sin \(\frac{x}{2}\) = 0

⇒  sin \(\frac{x}{2}\)  (sin \(\frac{3x}{2}\) - cos \(\frac{3x}{2}\)) = 0
 Therefore, either, sin \(\frac{x}{2}\) = 0          

⇒ \(\frac{x}{2}\)= nπ     

⇒ x = 2nπ

or, sin \(\frac{3x}{2}\) -  cos \(\frac{3x}{2}\) = 0

⇒ sin \(\frac{3x}{2}\) = cos \(\frac{3x}{2}\)

⇒ tan \(\frac{3x}{2}\) = 1

⇒ tan \(\frac{3x}{2}\) = tan \(\frac{π}{4}\)

⇒ \(\frac{3x}{2}\)= nπ + \(\frac{π}{4}\)

⇒ x = \(\frac{1}{3}\) (2nπ + \(\frac{π}{2}\)) = (4n + 1)\(\frac{π}{6}\)

Therefore, the general solutions of cos x + sin x = cos 2x + sin 2x are x = 2nπ and x = (4n+1)\(\frac{π}{6}\), Where, n = 0, ±1, ±2, ………………….. 


5. Find the general solutions of sin 4x cos 2x = cos 5x sin x

Solution:

sin 4x cos 2x = cos 5x sin x

⇒ 2 sin 4x cos 2x = 2 cos 5x sin x

⇒ sin 6x + sin 2x = sin 6x - sin 4x     

⇒ sin 2x + sin 4x =0

⇒ 2sin 3x cos x =0

Therefore, either, sin 3x = 0 or, cos x = 0

i.e., 3x = nπ or, x = (2n + 1)\(\frac{π}{6}\)

⇒ x = \(\frac{nπ}{3}\) or,  x = (2n + 1)\(\frac{π}{6}\)

Therefore, the general solutions of sin 4x cos 2x = cos 5x sin x are \(\frac{nπ}{3}\) and x = (2n + 1)\(\frac{π}{6}\)

 Trigonometric Equations






11 and 12 Grade Math

From Trigonometric Equation using Formula to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Word Problems on Dividing Money | Solving Money Division Word Problems

    Feb 13, 25 10:29 AM

    Word Problems on Dividing Money
    Read the questions given in the word problems on dividing money. We need to understand the statement and divide the amount of money as ordinary numbers with two digit numbers. 1. Ron buys 15 pens for…

    Read More

  2. Addition and Subtraction of Money | Examples | Worksheet With Answers

    Feb 13, 25 09:02 AM

    Add Money Method
    In Addition and Subtraction of Money we will learn how to add money and how to subtract money.

    Read More

  3. Worksheet on Division of Money | Word Problems on Division of Money

    Feb 13, 25 03:53 AM

    Division of Money Worksheet
    Practice the questions given in the worksheet on division of money. This sheet provides different types of questions on dividing the amount of money by a number; finding the quotient

    Read More

  4. Worksheet on Multiplication of Money | Word Problems | Answers

    Feb 13, 25 03:17 AM

    Worksheet on Multiplication of Money
    Practice the questions given in the worksheet on multiplication of money. This sheet provides different types of questions on multiplying the amount of money by a number; arrange in columns the amount…

    Read More

  5. Division of Money | Worked-out Examples | Divide the Amounts of Money

    Feb 13, 25 12:16 AM

    Divide Money
    In division of money we will learn how to divide the amounts of money by a number. We carryout division with money the same way as in decimal numbers. We put decimal point in the quotient after two pl…

    Read More