Trigonometric Equation using Formula

We will learn how to solve trigonometric equation using formula.

Here we will use the following formulas to get the solution of the trigonometric equations.

(a) If sin θ = 0 then θ = nπ, where n = 0, ± 1, ± 2, ± 3, …….

(b) If cos θ = 0 then θ = (2n + 1) \(\frac{π}{2}\), where n = 0, ± 1, ± 2, ± 3, …….

(c) If cos θ = cos ∝ then θ = 2nπ ± ∝, where n = 0, ± 1, ± 2, ± 3, …….

(d) If sin θ = sin ∝ then θ = n π + (-1) \(^{n}\) ∝, where n = 0, ± 1, ± 2, ± 3, …….

(e) If a cos θ + b sin θ = c then θ  = 2nπ + ∝ ±  β, where cos β = \(\frac{c}{\sqrt{a^{2}  +  b^{2}}}\), cos ∝ = \(\frac{a}{\sqrt{a^{2}  +  b^{2}}}\) and sin ∝ = \(\frac{b}{\sqrt{a^{2}  +  b^{2}}}\), where n = 0, ± 1, ± 2, ± 3, …….

1. Solve tan x + sec x = √3. Also find values of x between 0° and 360°.

Solution:

tan x + sec x = √3

⇒ \(\frac{sin x}{cos x}\) + \(\frac{1}{cos x}\) = √3, where cos x ≠ 0

⇒ sin x + 1 = √3 cos x

⇒ √3 cos x - sin x = 1,

This trigonometric equation is of the form a cos θ + b sin θ = c where a = √3, b = -1 and c = 1.

⇒ Now dividing both sides by \(\sqrt{(\sqrt{3})^{2} + (1)^{2}}\)

⇒ \(\frac{√3}{2}\) cos x - \(\frac{1}{2}\)sin x = \(\frac{1}{2}\)

⇒ cos x cos \(\frac{π}{4}\) – sin x sin \(\frac{π}{6}\) = cos \(\frac{π}{3}\)

⇒ cos (x + \(\frac{π}{6}\)) = cos \(\frac{π}{3}\)

⇒ x + \(\frac{π}{6}\) = 2nπ ± \(\frac{π}{3}\), where n = 0, ± 1, ± 2, ± 3, …….

⇒ x = 2nπ ± \(\frac{π}{3}\) - \(\frac{π}{6}\), where n = 0, ± 1, ± 2, ± 3, …….

When we take minus sign with \(\frac{π}{3}\), we get

x = 2nπ - \(\frac{π}{3}\) - \(\frac{π}{6}\)

⇒ x = 2nπ - \(\frac{π}{2}\), so that cos x = cos (2nπ - \(\frac{π}{2}\)) = cos \(\frac{π}{2}\) = 0, which spoils the assumption cos x  ≠ 0 (otherwise the given equation would be meaningless).

So, x = 2nπ + \(\frac{π}{3}\) - \(\frac{π}{6}\), where n = 0, ± 1, ± 2, ± 3, …….

⇒ x = 2nπ + \(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, ……. is the general

solution of the given equation tan x + sec x = √3.

The only solution between 0° and 360° is x = \(\frac{π}{6}\) = 30°


2. Find the general solutions of θ which satisfy the equation sec θ = - √2

Solution:   

sec θ = -  √2

⇒ cos θ = - \(\frac{1}{√2}\)

⇒ cos θ = - cos \(\frac{π}{4}\)

⇒ cos θ = cos (π - \(\frac{π}{4}\))

⇒ cos θ = cos \(\frac{3π}{4}\)

⇒ θ = 2nπ ± \(\frac{3π}{4}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solutions of θ which satisfy the equation sec θ = - √2 is θ = 2nπ ± \(\frac{3π}{4}\), where, n = 0, ± 1, ± 2, ± 3, …….


3. Solve the equation 2 cos\(^{2}\) x + 3 sin x = 0

Solution:

2 cos\(^{2}\) x + 3 sin x = 0

⇒ 2(1 - sin\(^{2}\) x) + 3 sin x = 0

⇒ 2 – 2 sin\(^{2}\) x + 3 sin x = 0

⇒ 2 sin\(^{2}\) x – 3 sin x – 2 = 0

⇒ 2 sin\(^{2}\) x - 4 sin x + sin x – 2 = 0

⇒ 2 sin x(sin x - 2) + 1(sin – 2) = 0

⇒ (sin x - 2)(2 sin x + 1) = 0

⇒ Either sin x - 2 =0 or 2 sin x + 1 = 0

But sin x – 2 = 0 i.e., sin x = 2, which is not possible.

Now form 2 sin x + 1 = 0 we get

⇒ sin x = -½ 

⇒ sin x =- sin \(\frac{π}{6}\)

⇒ sin x = sin (π + \(\frac{π}{6}\))

⇒ sin x = sin \(\frac{7π}{6}\)

⇒ x = nπ + (1)\(^{n}\)\(\frac{7π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the solution for the equation 2 cos\(^{2}\) x + 3 sin x = 0 is x = nπ + (1)\(^{n}\)\(\frac{7π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

Note: In the above trig equation we observe that there is more than one trigonometric function. So, the identities (sin \(^{2}\) θ + cos \(^{2}\) θ = 1) are required to reduce the given equation to a single function.

4. Find the general solutions of cos x + sin x = cos 2x + sin 2x

Solution:

cos x + sin x = cos 2x + sin 2x

⇒cos x - cos 2x - sin 2x + sin x = 0

⇒  (cos x - cos 2x) - (sin 2x - sin x) = 0

⇒  2 sin \(\frac{3x}{2}\) sin \(\frac{x}{2}\) - 2 cos \(\frac{3x}{2}\) sin \(\frac{x}{2}\) = 0

⇒  sin \(\frac{x}{2}\)  (sin \(\frac{3x}{2}\) - cos \(\frac{3x}{2}\)) = 0
 Therefore, either, sin \(\frac{x}{2}\) = 0          

⇒ \(\frac{x}{2}\)= nπ     

⇒ x = 2nπ

or, sin \(\frac{3x}{2}\) -  cos \(\frac{3x}{2}\) = 0

⇒ sin \(\frac{3x}{2}\) = cos \(\frac{3x}{2}\)

⇒ tan \(\frac{3x}{2}\) = 1

⇒ tan \(\frac{3x}{2}\) = tan \(\frac{π}{4}\)

⇒ \(\frac{3x}{2}\)= nπ + \(\frac{π}{4}\)

⇒ x = \(\frac{1}{3}\) (2nπ + \(\frac{π}{2}\)) = (4n + 1)\(\frac{π}{6}\)

Therefore, the general solutions of cos x + sin x = cos 2x + sin 2x are x = 2nπ and x = (4n+1)\(\frac{π}{6}\), Where, n = 0, ±1, ±2, ………………….. 


5. Find the general solutions of sin 4x cos 2x = cos 5x sin x

Solution:

sin 4x cos 2x = cos 5x sin x

⇒ 2 sin 4x cos 2x = 2 cos 5x sin x

⇒ sin 6x + sin 2x = sin 6x - sin 4x     

⇒ sin 2x + sin 4x =0

⇒ 2sin 3x cos x =0

Therefore, either, sin 3x = 0 or, cos x = 0

i.e., 3x = nπ or, x = (2n + 1)\(\frac{π}{6}\)

⇒ x = \(\frac{nπ}{3}\) or,  x = (2n + 1)\(\frac{π}{6}\)

Therefore, the general solutions of sin 4x cos 2x = cos 5x sin x are \(\frac{nπ}{3}\) and x = (2n + 1)\(\frac{π}{6}\)

 Trigonometric Equations






11 and 12 Grade Math

From Trigonometric Equation using Formula to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Rupees and Paise | Paise Coins | Rupee Coins | Rupee Notes

    Dec 04, 23 02:14 PM

    Different types of Indian Coins
    Money consists of rupees and paise; we require money to purchase things. 100 paise make one rupee. List of paise and rupees in the shape of coins and notes:

    Read More

  2. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Dec 04, 23 01:50 PM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Dec 04, 23 01:49 PM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More