Trigonometric Equation using Formula

We will learn how to solve trigonometric equation using formula.

Here we will use the following formulas to get the solution of the trigonometric equations.

(a) If sin θ = 0 then θ = nπ, where n = 0, ± 1, ± 2, ± 3, …….

(b) If cos θ = 0 then θ = (2n + 1) \(\frac{π}{2}\), where n = 0, ± 1, ± 2, ± 3, …….

(c) If cos θ = cos ∝ then θ = 2nπ ± ∝, where n = 0, ± 1, ± 2, ± 3, …….

(d) If sin θ = sin ∝ then θ = n π + (-1) \(^{n}\) ∝, where n = 0, ± 1, ± 2, ± 3, …….

(e) If a cos θ + b sin θ = c then θ  = 2nπ + ∝ ±  β, where cos β = \(\frac{c}{\sqrt{a^{2}  +  b^{2}}}\), cos ∝ = \(\frac{a}{\sqrt{a^{2}  +  b^{2}}}\) and sin ∝ = \(\frac{b}{\sqrt{a^{2}  +  b^{2}}}\), where n = 0, ± 1, ± 2, ± 3, …….

1. Solve tan x + sec x = √3. Also find values of x between 0° and 360°.

Solution:

tan x + sec x = √3

⇒ \(\frac{sin x}{cos x}\) + \(\frac{1}{cos x}\) = √3, where cos x ≠ 0

⇒ sin x + 1 = √3 cos x

⇒ √3 cos x - sin x = 1,

This trigonometric equation is of the form a cos θ + b sin θ = c where a = √3, b = -1 and c = 1.

⇒ Now dividing both sides by \(\sqrt{(\sqrt{3})^{2} + (1)^{2}}\)

⇒ \(\frac{√3}{2}\) cos x - \(\frac{1}{2}\)sin x = \(\frac{1}{2}\)

⇒ cos x cos \(\frac{π}{4}\) – sin x sin \(\frac{π}{6}\) = cos \(\frac{π}{3}\)

⇒ cos (x + \(\frac{π}{6}\)) = cos \(\frac{π}{3}\)

⇒ x + \(\frac{π}{6}\) = 2nπ ± \(\frac{π}{3}\), where n = 0, ± 1, ± 2, ± 3, …….

⇒ x = 2nπ ± \(\frac{π}{3}\) - \(\frac{π}{6}\), where n = 0, ± 1, ± 2, ± 3, …….

When we take minus sign with \(\frac{π}{3}\), we get

x = 2nπ - \(\frac{π}{3}\) - \(\frac{π}{6}\)

⇒ x = 2nπ - \(\frac{π}{2}\), so that cos x = cos (2nπ - \(\frac{π}{2}\)) = cos \(\frac{π}{2}\) = 0, which spoils the assumption cos x  ≠ 0 (otherwise the given equation would be meaningless).

So, x = 2nπ + \(\frac{π}{3}\) - \(\frac{π}{6}\), where n = 0, ± 1, ± 2, ± 3, …….

⇒ x = 2nπ + \(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, ……. is the general

solution of the given equation tan x + sec x = √3.

The only solution between 0° and 360° is x = \(\frac{π}{6}\) = 30°


2. Find the general solutions of θ which satisfy the equation sec θ = - √2

Solution:   

sec θ = -  √2

⇒ cos θ = - \(\frac{1}{√2}\)

⇒ cos θ = - cos \(\frac{π}{4}\)

⇒ cos θ = cos (π - \(\frac{π}{4}\))

⇒ cos θ = cos \(\frac{3π}{4}\)

⇒ θ = 2nπ ± \(\frac{3π}{4}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solutions of θ which satisfy the equation sec θ = - √2 is θ = 2nπ ± \(\frac{3π}{4}\), where, n = 0, ± 1, ± 2, ± 3, …….


3. Solve the equation 2 cos\(^{2}\) x + 3 sin x = 0

Solution:

2 cos\(^{2}\) x + 3 sin x = 0

⇒ 2(1 - sin\(^{2}\) x) + 3 sin x = 0

⇒ 2 – 2 sin\(^{2}\) x + 3 sin x = 0

⇒ 2 sin\(^{2}\) x – 3 sin x – 2 = 0

⇒ 2 sin\(^{2}\) x - 4 sin x + sin x – 2 = 0

⇒ 2 sin x(sin x - 2) + 1(sin – 2) = 0

⇒ (sin x - 2)(2 sin x + 1) = 0

⇒ Either sin x - 2 =0 or 2 sin x + 1 = 0

But sin x – 2 = 0 i.e., sin x = 2, which is not possible.

Now form 2 sin x + 1 = 0 we get

⇒ sin x = -½ 

⇒ sin x =- sin \(\frac{π}{6}\)

⇒ sin x = sin (π + \(\frac{π}{6}\))

⇒ sin x = sin \(\frac{7π}{6}\)

⇒ x = nπ + (1)\(^{n}\)\(\frac{7π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the solution for the equation 2 cos\(^{2}\) x + 3 sin x = 0 is x = nπ + (1)\(^{n}\)\(\frac{7π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

Note: In the above trig equation we observe that there is more than one trigonometric function. So, the identities (sin \(^{2}\) θ + cos \(^{2}\) θ = 1) are required to reduce the given equation to a single function.

4. Find the general solutions of cos x + sin x = cos 2x + sin 2x

Solution:

cos x + sin x = cos 2x + sin 2x

⇒cos x - cos 2x - sin 2x + sin x = 0

⇒  (cos x - cos 2x) - (sin 2x - sin x) = 0

⇒  2 sin \(\frac{3x}{2}\) sin \(\frac{x}{2}\) - 2 cos \(\frac{3x}{2}\) sin \(\frac{x}{2}\) = 0

⇒  sin \(\frac{x}{2}\)  (sin \(\frac{3x}{2}\) - cos \(\frac{3x}{2}\)) = 0
 Therefore, either, sin \(\frac{x}{2}\) = 0          

⇒ \(\frac{x}{2}\)= nπ     

⇒ x = 2nπ

or, sin \(\frac{3x}{2}\) -  cos \(\frac{3x}{2}\) = 0

⇒ sin \(\frac{3x}{2}\) = cos \(\frac{3x}{2}\)

⇒ tan \(\frac{3x}{2}\) = 1

⇒ tan \(\frac{3x}{2}\) = tan \(\frac{π}{4}\)

⇒ \(\frac{3x}{2}\)= nπ + \(\frac{π}{4}\)

⇒ x = \(\frac{1}{3}\) (2nπ + \(\frac{π}{2}\)) = (4n + 1)\(\frac{π}{6}\)

Therefore, the general solutions of cos x + sin x = cos 2x + sin 2x are x = 2nπ and x = (4n+1)\(\frac{π}{6}\), Where, n = 0, ±1, ±2, ………………….. 


5. Find the general solutions of sin 4x cos 2x = cos 5x sin x

Solution:

sin 4x cos 2x = cos 5x sin x

⇒ 2 sin 4x cos 2x = 2 cos 5x sin x

⇒ sin 6x + sin 2x = sin 6x - sin 4x     

⇒ sin 2x + sin 4x =0

⇒ 2sin 3x cos x =0

Therefore, either, sin 3x = 0 or, cos x = 0

i.e., 3x = nπ or, x = (2n + 1)\(\frac{π}{6}\)

⇒ x = \(\frac{nπ}{3}\) or,  x = (2n + 1)\(\frac{π}{6}\)

Therefore, the general solutions of sin 4x cos 2x = cos 5x sin x are \(\frac{nπ}{3}\) and x = (2n + 1)\(\frac{π}{6}\)

 Trigonometric Equations






11 and 12 Grade Math

From Trigonometric Equation using Formula to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Concept of Fractions |Concept of Half| Concept of One Fourth|Two Third

    Nov 07, 24 01:37 AM

    One-half
    Concept of fractions will help us to express different fractional parts of a whole. One-half When an article or a collection of objects is divided into two equal parts is called as half of the whole.

    Read More

  2. 2nd Grade Math Practice | Second Grade Math |2nd Grade Math Worksheets

    Nov 06, 24 11:59 PM

    In 2nd grade math practice you will get all types of examples on different topics along with the solutions. Second grade math games are arranged in such a way that students can learn math

    Read More

  3. 2nd Grade Division Word Problems | Worksheet on Division Word Problems

    Nov 05, 24 01:49 PM

    Division Word Problems Grade 2

    Read More

  4. 2nd Grade Division Worksheet | Dividing 2-digit by 1-digit Numbers

    Nov 05, 24 01:15 AM

    Division Fact 12 ÷ 3
    Dividing 2-digit by 1-digit Numbers

    Read More

  5. Even and Odd Numbers Between 1 and 100 | Even and Odd Numbers|Examples

    Nov 05, 24 12:55 AM

    even and odd numbers
    All the even and odd numbers between 1 and 100 are discussed here. What are the even numbers from 1 to 100? The even numbers from 1 to 100 are:

    Read More