Trigonometric Equation using Formula

We will learn how to solve trigonometric equation using formula.

Here we will use the following formulas to get the solution of the trigonometric equations.

(a) If sin θ = 0 then θ = nπ, where n = 0, ± 1, ± 2, ± 3, …….

(b) If cos θ = 0 then θ = (2n + 1) \(\frac{π}{2}\), where n = 0, ± 1, ± 2, ± 3, …….

(c) If cos θ = cos ∝ then θ = 2nπ ± ∝, where n = 0, ± 1, ± 2, ± 3, …….

(d) If sin θ = sin ∝ then θ = n π + (-1) \(^{n}\) ∝, where n = 0, ± 1, ± 2, ± 3, …….

(e) If a cos θ + b sin θ = c then θ  = 2nπ + ∝ ±  β, where cos β = \(\frac{c}{\sqrt{a^{2}  +  b^{2}}}\), cos ∝ = \(\frac{a}{\sqrt{a^{2}  +  b^{2}}}\) and sin ∝ = \(\frac{b}{\sqrt{a^{2}  +  b^{2}}}\), where n = 0, ± 1, ± 2, ± 3, …….

1. Solve tan x + sec x = √3. Also find values of x between 0° and 360°.

Solution:

tan x + sec x = √3

⇒ \(\frac{sin x}{cos x}\) + \(\frac{1}{cos x}\) = √3, where cos x ≠ 0

⇒ sin x + 1 = √3 cos x

⇒ √3 cos x - sin x = 1,

This trigonometric equation is of the form a cos θ + b sin θ = c where a = √3, b = -1 and c = 1.

⇒ Now dividing both sides by \(\sqrt{(\sqrt{3})^{2} + (1)^{2}}\)

⇒ \(\frac{√3}{2}\) cos x - \(\frac{1}{2}\)sin x = \(\frac{1}{2}\)

⇒ cos x cos \(\frac{π}{4}\) – sin x sin \(\frac{π}{6}\) = cos \(\frac{π}{3}\)

⇒ cos (x + \(\frac{π}{6}\)) = cos \(\frac{π}{3}\)

⇒ x + \(\frac{π}{6}\) = 2nπ ± \(\frac{π}{3}\), where n = 0, ± 1, ± 2, ± 3, …….

⇒ x = 2nπ ± \(\frac{π}{3}\) - \(\frac{π}{6}\), where n = 0, ± 1, ± 2, ± 3, …….

When we take minus sign with \(\frac{π}{3}\), we get

x = 2nπ - \(\frac{π}{3}\) - \(\frac{π}{6}\)

⇒ x = 2nπ - \(\frac{π}{2}\), so that cos x = cos (2nπ - \(\frac{π}{2}\)) = cos \(\frac{π}{2}\) = 0, which spoils the assumption cos x  ≠ 0 (otherwise the given equation would be meaningless).

So, x = 2nπ + \(\frac{π}{3}\) - \(\frac{π}{6}\), where n = 0, ± 1, ± 2, ± 3, …….

⇒ x = 2nπ + \(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, ……. is the general

solution of the given equation tan x + sec x = √3.

The only solution between 0° and 360° is x = \(\frac{π}{6}\) = 30°


2. Find the general solutions of θ which satisfy the equation sec θ = - √2

Solution:   

sec θ = -  √2

⇒ cos θ = - \(\frac{1}{√2}\)

⇒ cos θ = - cos \(\frac{π}{4}\)

⇒ cos θ = cos (π - \(\frac{π}{4}\))

⇒ cos θ = cos \(\frac{3π}{4}\)

⇒ θ = 2nπ ± \(\frac{3π}{4}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solutions of θ which satisfy the equation sec θ = - √2 is θ = 2nπ ± \(\frac{3π}{4}\), where, n = 0, ± 1, ± 2, ± 3, …….


3. Solve the equation 2 cos\(^{2}\) x + 3 sin x = 0

Solution:

2 cos\(^{2}\) x + 3 sin x = 0

⇒ 2(1 - sin\(^{2}\) x) + 3 sin x = 0

⇒ 2 – 2 sin\(^{2}\) x + 3 sin x = 0

⇒ 2 sin\(^{2}\) x – 3 sin x – 2 = 0

⇒ 2 sin\(^{2}\) x - 4 sin x + sin x – 2 = 0

⇒ 2 sin x(sin x - 2) + 1(sin – 2) = 0

⇒ (sin x - 2)(2 sin x + 1) = 0

⇒ Either sin x - 2 =0 or 2 sin x + 1 = 0

But sin x – 2 = 0 i.e., sin x = 2, which is not possible.

Now form 2 sin x + 1 = 0 we get

⇒ sin x = -½ 

⇒ sin x =- sin \(\frac{π}{6}\)

⇒ sin x = sin (π + \(\frac{π}{6}\))

⇒ sin x = sin \(\frac{7π}{6}\)

⇒ x = nπ + (1)\(^{n}\)\(\frac{7π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the solution for the equation 2 cos\(^{2}\) x + 3 sin x = 0 is x = nπ + (1)\(^{n}\)\(\frac{7π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

Note: In the above trig equation we observe that there is more than one trigonometric function. So, the identities (sin \(^{2}\) θ + cos \(^{2}\) θ = 1) are required to reduce the given equation to a single function.

4. Find the general solutions of cos x + sin x = cos 2x + sin 2x

Solution:

cos x + sin x = cos 2x + sin 2x

⇒cos x - cos 2x - sin 2x + sin x = 0

⇒  (cos x - cos 2x) - (sin 2x - sin x) = 0

⇒  2 sin \(\frac{3x}{2}\) sin \(\frac{x}{2}\) - 2 cos \(\frac{3x}{2}\) sin \(\frac{x}{2}\) = 0

⇒  sin \(\frac{x}{2}\)  (sin \(\frac{3x}{2}\) - cos \(\frac{3x}{2}\)) = 0
 Therefore, either, sin \(\frac{x}{2}\) = 0          

⇒ \(\frac{x}{2}\)= nπ     

⇒ x = 2nπ

or, sin \(\frac{3x}{2}\) -  cos \(\frac{3x}{2}\) = 0

⇒ sin \(\frac{3x}{2}\) = cos \(\frac{3x}{2}\)

⇒ tan \(\frac{3x}{2}\) = 1

⇒ tan \(\frac{3x}{2}\) = tan \(\frac{π}{4}\)

⇒ \(\frac{3x}{2}\)= nπ + \(\frac{π}{4}\)

⇒ x = \(\frac{1}{3}\) (2nπ + \(\frac{π}{2}\)) = (4n + 1)\(\frac{π}{6}\)

Therefore, the general solutions of cos x + sin x = cos 2x + sin 2x are x = 2nπ and x = (4n+1)\(\frac{π}{6}\), Where, n = 0, ±1, ±2, ………………….. 


5. Find the general solutions of sin 4x cos 2x = cos 5x sin x

Solution:

sin 4x cos 2x = cos 5x sin x

⇒ 2 sin 4x cos 2x = 2 cos 5x sin x

⇒ sin 6x + sin 2x = sin 6x - sin 4x     

⇒ sin 2x + sin 4x =0

⇒ 2sin 3x cos x =0

Therefore, either, sin 3x = 0 or, cos x = 0

i.e., 3x = nπ or, x = (2n + 1)\(\frac{π}{6}\)

⇒ x = \(\frac{nπ}{3}\) or,  x = (2n + 1)\(\frac{π}{6}\)

Therefore, the general solutions of sin 4x cos 2x = cos 5x sin x are \(\frac{nπ}{3}\) and x = (2n + 1)\(\frac{π}{6}\)

 Trigonometric Equations






11 and 12 Grade Math

From Trigonometric Equation using Formula to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. 5th Grade Fractions | Definition | Examples | Word Problems |Worksheet

    Jul 16, 24 09:33 AM

    Fraction 5/8
    In 5th Grade Fractions we will discuss about definition of fraction, concept of fractions and different types of examples on fractions. A fraction is a number representing a part of a whole. The whole…

    Read More

  2. Worksheet on Word Problems on Fractions | Fraction Word Problems | Ans

    Jul 16, 24 02:20 AM

    In worksheet on word problems on fractions we will solve different types of word problems on multiplication of fractions, word problems on division of fractions etc... 1. How many one-fifths

    Read More

  3. Word Problems on Fraction | Math Fraction Word Problems |Fraction Math

    Jul 16, 24 01:36 AM

    In word problems on fraction we will solve different types of problems on multiplication of fractional numbers and division of fractional numbers.

    Read More

  4. Worksheet on Add and Subtract Fractions | Word Problems | Fractions

    Jul 16, 24 12:17 AM

    Worksheet on Add and Subtract Fractions
    Recall the topic carefully and practice the questions given in the math worksheet on add and subtract fractions. The question mainly covers addition with the help of a fraction number line, subtractio…

    Read More

  5. Comparison of Like Fractions | Comparing Fractions | Like Fractions

    Jul 15, 24 03:22 PM

    Comparison of Like Fractions
    Any two like fractions can be compared by comparing their numerators. The fraction with larger numerator is greater than the fraction with smaller numerator, for example \(\frac{7}{13}\) > \(\frac{2…

    Read More