cos θ = cos ∝

How to find the general solution of an equation of the form cos θ = cos ∝?

Prove that the general solution of cos θ = cos ∝ is given by θ = 2nπ ± ∝, n ∈ Z.

Solution:

We have,

cos θ = cos ∝

⇒ cos θ - cos ∝ = 0 

⇒ 2 sin \(\frac{(θ   +  ∝)}{2}\) sin \(\frac{(θ   -  ∝)}{2}\) = 0

Therefore, either, sin \(\frac{(θ   +  ∝)}{2}\) = 0 or, sin \(\frac{(θ   -  ∝)}{2}\) = 0

Now, from sin \(\frac{(θ   +  ∝)}{2}\) = 0 we get, \(\frac{(θ   +  ∝)}{2}\) = nπ, n ∈ Z

⇒ θ = 2nπ - ∝, n ∈ Z i.e., (any even multiple of π) - ∝ …………………….(i)

And from sin \(\frac{(θ   -  ∝)}{2}\) = 0 we get,

\(\frac{(θ   -  ∝)}{2}\) = nπ, n ∈ Z                  

⇒ θ = 2nπ + ∝, m ∈ Z i.e., (any even multiple of π) + ∝ …………………….(ii)

Now combining the solutions (i) and (ii) we get,

θ = 2nπ ± ∝, where n ∈ Z.

Hence, the general solution of cos θ = cos ∝ is θ = 2nπ ± , where n ∈ Z.


Note: The equation sec θ = sec ∝ is equivalent to cos θ = cos ∝ (since, sec θ = \(\frac{1}{cos  θ}\) and sec ∝ = \(\frac{1}{cos  ∝}\)). Thus, sec θ = sec ∝ and cos θ = cos ∝ have the same general solution.

Hence, the general solution of sec θ = secs ∝ is θ = 2nπ ± , where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3,…….)


1. Find the general values of θ if cos θ = - \(\frac{√3}{2}\).

Solution:

cos θ = - \(\frac{√3}{2}\)

⇒ cos θ = - cos \(\frac{π}{6}\)

⇒ cos θ = cos (π - \(\frac{π}{6}\))

⇒ cos θ = cos \(\frac{5π}{6}\)

⇒ θ = 2nπ ± \(\frac{5π}{6}\), where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3,…….)


2. Find the general values of θ if cos θ = \(\frac{1}{2}\)

Solution:

cos θ = \(\frac{1}{2}\)

cos θ = cos \(\frac{π}{3}\)

θ = 2nπ ± \(\frac{π}{3}\), where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3,…….)

Therefore the general solution of cos θ = \(\frac{1}{2}\) is θ = 2nπ ± \(\frac{π}{3}\), where, n = 0, ± 1, ± 2, ± 3, ± 4 .....

3. Solve for x if 0 ≤ x ≤ \(\frac{π}{2}\) sin x + sin 5x = sin 3x

Solution:

sin x + sin 5x = sin 3x

⇒ sin 5x + sin x = sin 3x

⇒ 2 sin \(\frac{5x + x}{2}\) cos \(\frac{5x + x}{2}\) = sin 3x

⇒ 2 sin 3x cos 2x = sin 3x

⇒ 2 sin 3x cos 2x - sin 3x = 0

⇒ sin 3x (2 cos 2x - 1) = 0

Therefore, either sin 3x = 0 or 2 cos 2x – 1 = 0

Now, from sin 3x = 0 we get,

3x = nπ   

⇒ x = \(\frac{nπ}{3}\) …………..(1)

similarly, from 2 cos 2x - 1 = 0 we get,

⇒ cos 2x = \(\frac{1}{2}\)

⇒ cos 2x = cos \(\frac{π}{3}\)

Therefore, 2x = 2nπ ± \(\frac{π}{3}\)

⇒ x = nπ ± \(\frac{π}{6}\) …………..(2)

Now, putting n = 0 in (1) we get, x = 0            

Now, putting n = 1 in (1) we get, x = \(\frac{π}{3}\)       

Now, putting n = 0 in (2) we get, x = ± \(\frac{π}{6}\)      

Therefore, the required solutions of the given equation in 0 ≤ x ≤ π/2 are:

x = 0, \(\frac{π}{3}\), \(\frac{π}{6}\).

 Trigonometric Equations












11 and 12 Grade Math

From sin θ = -1 to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Rupees and Paise | Paise Coins | Rupee Coins | Rupee Notes

    Dec 04, 23 02:14 PM

    Different types of Indian Coins
    Money consists of rupees and paise; we require money to purchase things. 100 paise make one rupee. List of paise and rupees in the shape of coins and notes:

    Read More

  2. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Dec 04, 23 01:50 PM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Dec 04, 23 01:49 PM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More