√2 cos x - 1 = 0

We will discuss about the general solution of the equation square root of 2 cos x minus 1 equals 0 (i.e., √2 cos x - 1 = 0) or cos x equals 1 by square root of 2 (i.e., cos x = \(\frac{1}{√2}\)).

How to find the general solution of the trigonometric equation cos x = \(\frac{1}{√2}\) or √2 cos x - 1 = 0?

Solution:

We have,

√2 cos x - 1 = 0

⇒ √2 cos x = 1

⇒ cos x = \(\frac{1}{√2}\)

⇒ cos x = cos \(\frac{π}{4}\)  or, cos (- \(\frac{π}{4}\))

Let O be the centre of a unit circle. We know that in unit circle, the length of the circumference is 2π.

If we started from A and moves in anticlockwise direction then at the points A, B, A', B' and A, the arc length travelled are 0, \(\frac{π}{2}\), π, \(\frac{3π}{2}\), and 2π.

Therefore, from the above unit circle it is clear that the final arm OP of the angle x lies either in the first or in the fourth quadrant.

If the final arm OP lies in the first quadrant then, 

cos x = \(\frac{1}{√2}\) 

⇒ cos x = cos \(\frac{π}{4}\)

⇒ cos x = cos (2nπ + \(\frac{π}{4}\)), Where n ∈ I (i.e., n = 0, ± 1, ± 2, ± 3,…….)

Therefore, x = cos (2nπ + \(\frac{π}{4}\)) …………….. (i)

Again, if the final arm OP of the unit circle lies in the fourth quadrant then,

cos x = \(\frac{1}{√2}\)  

⇒ cos x = cos (- \(\frac{π}{4}\)) 

⇒ cos x = cos (2nπ - \(\frac{π}{4}\)), Where n ∈ I (i.e., n = 0, ± 1, ± 2, ± 3,…….)

Therefore, x = cos (2nπ + \(\frac{π}{4}\)) …………….. (ii)

Therefore, the general solutions of equation cos x = \(\frac{1}{√2}\) are the infinite sets of value of x given in (i) and (ii).

Hence general solution of √2 cos x - 1 = 0 is x = 2nπ ± \(\frac{π}{4}\), n ∈ I.

 Trigonometric Equations






11 and 12 Grade Math

From √2 cos x - 1 = 0 to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Rupees and Paise | Paise Coins | Rupee Coins | Rupee Notes

    Dec 04, 23 02:14 PM

    Different types of Indian Coins
    Money consists of rupees and paise; we require money to purchase things. 100 paise make one rupee. List of paise and rupees in the shape of coins and notes:

    Read More

  2. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Dec 04, 23 01:50 PM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Dec 04, 23 01:49 PM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More