We will discuss about the general solution of the equation square root of 2 cos x minus 1 equals 0 (i.e., √2 cos x - 1 = 0) or cos x equals 1 by square root of 2 (i.e., cos x = \(\frac{1}{√2}\)).

How to find the general solution of the trigonometric equation cos x = \(\frac{1}{√2}\) or √2 cos x - 1 = 0?

**Solution:**

We have,

√2 cos x - 1 = 0

⇒ √2 cos x = 1

⇒ cos x = \(\frac{1}{√2}\)

⇒ cos x = cos \(\frac{π}{4}\) or, cos (- \(\frac{π}{4}\))

Let O be the centre of a unit circle. We know that in unit
circle, the length of the circumference is 2π.

If we started from A and moves in anticlockwise direction then at the points A, B, A', B' and A, the arc length travelled are 0, \(\frac{π}{2}\), π, \(\frac{3π}{2}\), and 2π.

Therefore, from the above unit circle it is clear that the final arm OP of the angle x lies either in the first or in the fourth quadrant.

If the final arm OP lies in the first quadrant then,

cos x = \(\frac{1}{√2}\)

⇒ cos x = cos \(\frac{π}{4}\)

⇒ cos x = cos (2nπ + \(\frac{π}{4}\)), Where n ∈ I (i.e., n = 0, ± 1, ± 2, ± 3,…….)

Therefore, x = cos (2nπ + \(\frac{π}{4}\)) …………….. (i)

Again, if the final arm OP of the unit circle lies in the fourth quadrant then,

cos x = \(\frac{1}{√2}\)

⇒ cos x = cos (- \(\frac{π}{4}\))

⇒ cos x = cos (2nπ - \(\frac{π}{4}\)), Where n ∈ I (i.e., n = 0, ± 1, ± 2, ± 3,…….)

Therefore, x = cos (2nπ + \(\frac{π}{4}\)) …………….. (ii)

Therefore, the general solutions of equation cos x = \(\frac{1}{√2}\) are the infinite sets of value of x given in (i) and (ii).

Hence general solution of √2 cos x - 1 = 0 is **x = 2n****π ± \(\frac{π}{4}\)**, n ∈
I.

**General solution of the equation sin x = ½****General solution of the equation cos x = 1/√2****G****eneral solution of the equation tan x = √3****General Solution of the Equation sin θ = 0****General Solution of the Equation cos θ = 0****General Solution of the Equation tan θ = 0****General Solution of the Equation sin θ = sin ∝****General Solution of the Equation sin θ = 1****General Solution of the Equation sin θ = -1****General Solution of the Equation cos θ = cos ∝****General Solution of the Equation cos θ = 1****General Solution of the Equation cos θ = -1****General Solution of the Equation tan θ = tan ∝****General Solution of a cos θ + b sin θ = c****Trigonometric Equation Formula****Trigonometric Equation using Formula****General solution of Trigonometric Equation****Problems on Trigonometric Equation**

**11 and 12 Grade Math**

**From √2 cos x - 1 = 0 to HOME PAGE**

**Didn't find what you were looking for? Or want to know more information
about Math Only Math.
Use this Google Search to find what you need.**

## New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.