Subscribe to our YouTube channel for the latest videos, updates, and tips.


a cos θ + b sin θ = c

Trigonometric equations of the form a cos theta plus b sin theta equals c (i.e. a cos θ + b sin θ = c) where a, b, c are constants (a, b, c ∈ R) and |c| ≤ \(\sqrt{a^{2} + b^{2}}\).

To solve this type of questions, we first reduce them in the form cos θ = cos α or sin θ = sin α.

We use the following ways to solve the equations of the form a cos θ + b sin θ = c.

(i) First write the equation a cos θ + b sin θ = c.

(ii) Let a = r cos ∝ and b = r sin ∝ where, r > 0 and - \(\frac{π}{2}\) ≤ ∝ ≤ \(\frac{π}{2}\).

Now, a\(^{2}\) + b\(^{2}\) = r\(^{2}\) cos\(^{2}\) ∝ + r\(^{2}\) sin\(^{2}\) ∝ = r\(^{2}\) (cos\(^{2}\) ∝ + sin\(^{2}\) ∝) = r\(^{2}\)

or, r =  \(\sqrt{a^{2} + b^{2}}\)

 and tan ∝ = \(\frac{r  sin  ∝}{r  cos  ∝}\) = \(\frac{b}{a}\) i.e. ∝ = tan\(^{-1}\) (\(\frac{b}{a}\)).

(iii) Using the substitution in step (ii), the equation reduce to r cos (θ - ∝) = c

⇒ cos  (θ - ∝) = \(\frac{c}{r}\) = cos β

 Now, putting the value of a and b in a cos θ + b sin θ = c we get,

r cos ∝ cos θ + r sin ∝ sin θ = c       

⇒ r cos (θ - ∝) = c

⇒ cos (θ - ∝) = \(\frac{c}{r}\) = cos β          (say)

(iv) Solve the equation obtained in step (iii) by using the formula of cos θ = cos ∝.

cos (θ - ∝) = cos β         

Therefore, θ - ∝ = 2nπ ± β                 

⇒ θ = 2nπ ± β + ∝ where n ∈ Z

and cos β = \(\frac{c}{r}\) = \(\frac{c}{\sqrt{a^{2}  +  b^{2}}}\)

Note: If |c| > \(\sqrt{a^{2} + b^{2}}\), the given equation has no solution.                  

From the above discussion we observe that a cos θ + b sin θ = c can be solved  when |cos β| ≤ 1

⇒ |\(\frac{c}{\sqrt{a^{2}  +  b^{2}}}\)| ≤ 1

⇒ |c| ≤  \(\sqrt{a^{2} + b^{2}}\)


1. Solve the trigonometric equation √3 cos θ + sin θ = √2.

Solution:

√3 cos θ + sin θ = √2

This trigonometric equation is of the form a cos θ + b sin θ = c where a = √3, b = 1 and c = √2.

Let a  = r cos ∝ and b = r sin ∝ i.e., √3 = r cos ∝ and 1 = r sin ∝.

Then r = \(\sqrt{a^{2} + b^{2}}\) = \(\sqrt{(√3)^{2} + 1^{2}}\) = 2

and tan ∝ = \(\frac{1}{√3}\) ∝ = \(\frac{π}{6}\)

Substituting a = √3 = r cos ∝ and b = 1 = r sin ∝ in the given equation √3 cos θ + sin θ = √2 we get,

r cos ∝ cos θ + r sin ∝ sin θ = √2

r cos (θ - ∝) = √2

⇒ 2 cos (θ - \(\frac{π}{6}\)) = √2

⇒ cos (θ - \(\frac{π}{6}\)) = \(\frac{√2}{2}\)

⇒ cos (θ - \(\frac{π}{6}\)) = \(\frac{1}{√2}\)

cos (θ - \(\frac{π}{6}\)) = cos \(\frac{π}{4}\)

(θ - \(\frac{π}{6}\))= 2nπ ± \(\frac{π}{4}\), where  n = 0, ± 1, ± 2,………… 

θ = 2nπ ± \(\frac{π}{4}\) + \(\frac{π}{6}\), where  n = 0, ± 1, ± 2,………… 

θ = 2nπ + \(\frac{π}{4}\) + \(\frac{π}{6}\) or θ = 2nπ - \(\frac{π}{4}\) + \(\frac{π}{6}\), where  n = 0, ± 1, ± 2,………… 

θ = 2nπ + \(\frac{5π}{12}\) or θ = 2nπ - \(\frac{π}{12}\), where  n = 0, ± 1, ± 2,…………   


2. Solve √3 cos θ + sin θ = 1  (-2π < θ < 2π)

Solution: 

√3 cos θ + sin θ = 1

This trigonometric equation is of the form a cos θ + b sin θ = c where a = √3, b = 1 and c = 1.

Let a  = r cos ∝ and b = r sin ∝ i.e., √3 = r cos ∝ and 1 = r sin ∝.

Then r = \(\sqrt{a^{2} + b^{2}}\) = \(\sqrt{(√3)^{2} + 1^{2}}\) = 2

and tan ∝ = \(\frac{1}{√3}\) ⇒ ∝ = \(\frac{π}{6}\)

Substituting a = √3 = r cos ∝ and b = 1 = r sin ∝ in the given equation √3 cos θ + sin θ = √2 we get,

r cos ∝ cos θ + r sin ∝ sin θ = 1

⇒ r cos (θ - ∝) = 1

⇒ 2 cos (θ - \(\frac{π}{6}\)) = 1

⇒ cos (θ - \(\frac{π}{6}\)) = \(\frac{1}{2}\)

 cos (θ - \(\frac{π}{6}\)) = cos \(\frac{π}{3}\)

 (θ - \(\frac{π}{6}\))= 2nπ ± \(\frac{π}{3}\), where  n = 0, ± 1, ± 2, …………  

⇒ θ = 2nπ ± \(\frac{π}{3}\) + \(\frac{π}{6}\)where  n = 0, ± 1, ± 2, ………… 

⇒ Either, θ = 2nπ + \(\frac{π}{3}\) + \(\frac{π}{6}\) (4n + 1)\(\frac{π}{2}\)  ………..(1) or, θ = 2nπ - \(\frac{π}{3}\) + \(\frac{π}{6}\) = 2nπ - \(\frac{π}{6}\)  ………..(2)  Where 0, ± 1, ± 2, …………  

Now, putting n = 0 in equation (1) we get, θ = \(\frac{π}{2}\),

Putting n = 1 in equation (1) we get, θ = \(\frac{5π}{2}\),

Putting  n = -1 in equation (1) we get, θ = - \(\frac{3π}{2}\)

and putting  n = 0  in equation (2) we get, θ = - \(\frac{π}{6}\)

Putting n = 1 in equation (2) we get, θ = \(\frac{11π}{6}\) 

Putting n = -1 in equation (2) we get, θ = - \(\frac{13π}{6}\)

Therefore,the  required solution of the trigonometric equation √3 cos θ + sin θ = 1 in -2π < θ < 2π are θ = \(\frac{π}{2}\), - \(\frac{π}{6}\), - \(\frac{3π}{2}\)\(\frac{11π}{6}\).

 Trigonometric Equations







11 and 12 Grade Math

From a cos θ + b sin θ = c to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Simple Interest | Word problem on Simple Interest | Free

    Jun 19, 25 01:53 AM

    Worksheet on Simple Interest 2
    In worksheet on simple interest we will get different types of question on calculating the simple interest, the principal amount, the rate of interest and the word problems on simple interest.

    Read More

  2. Terms Related to Simple Interest | Simple Interest Formula | Principal

    Jun 19, 25 12:20 AM

    Terms Related to Simple Interest
    In terms related to simple interest we will learn all the terms related to simple interest. The terms related to simple interest are Interest, Principal, Amount, Simple Interest, Time or period of tim…

    Read More

  3. Introduction to Simple Interest | Definition | Formula | Examples

    Jun 18, 25 01:50 AM

    Simple Interest
    In simple interest we will learn and identify about the terms like Principal, Time, Rate, Amount, etc. PRINCIPAL (P): The money you deposit or put in the bank is called the PRINCIPAL.

    Read More

  4. 5th Grade Profit and Loss Percentage Worksheet | Profit and Loss | Ans

    Jun 18, 25 01:33 AM

    5th Grade Profit and Loss Percentage Worksheet
    In 5th grade profit and loss percentage worksheet you will get different types of problems on finding the profit or loss percentage when cost price and selling price are given, finding the selling pri…

    Read More

  5. Worksheet on Profit and Loss | Word Problem on Profit and Loss | Math

    Jun 18, 25 01:29 AM

    Worksheet on Profit and Loss
    In worksheet on profit and loss, we can see below there are some different types of questions which we can practice in our homework.

    Read More