a cos θ + b sin θ = c

Trigonometric equations of the form a cos theta plus b sin theta equals c (i.e. a cos θ + b sin θ = c) where a, b, c are constants (a, b, c ∈ R) and |c| ≤ \(\sqrt{a^{2} + b^{2}}\).

To solve this type of questions, we first reduce them in the form cos θ = cos α or sin θ = sin α.

We use the following ways to solve the equations of the form a cos θ + b sin θ = c.

(i) First write the equation a cos θ + b sin θ = c.

(ii) Let a = r cos ∝ and b = r sin ∝ where, r > 0 and - \(\frac{π}{2}\) ≤ ∝ ≤ \(\frac{π}{2}\).

Now, a\(^{2}\) + b\(^{2}\) = r\(^{2}\) cos\(^{2}\) ∝ + r\(^{2}\) sin\(^{2}\) ∝ = r\(^{2}\) (cos\(^{2}\) ∝ + sin\(^{2}\) ∝) = r\(^{2}\)

or, r =  \(\sqrt{a^{2} + b^{2}}\)

 and tan ∝ = \(\frac{r  sin  ∝}{r  cos  ∝}\) = \(\frac{b}{a}\) i.e. ∝ = tan\(^{-1}\) (\(\frac{b}{a}\)).

(iii) Using the substitution in step (ii), the equation reduce to r cos (θ - ∝) = c

⇒ cos  (θ - ∝) = \(\frac{c}{r}\) = cos β

 Now, putting the value of a and b in a cos θ + b sin θ = c we get,

r cos ∝ cos θ + r sin ∝ sin θ = c       

⇒ r cos (θ - ∝) = c

⇒ cos (θ - ∝) = \(\frac{c}{r}\) = cos β          (say)

(iv) Solve the equation obtained in step (iii) by using the formula of cos θ = cos ∝.

cos (θ - ∝) = cos β         

Therefore, θ - ∝ = 2nπ ± β                 

⇒ θ = 2nπ ± β + ∝ where n ∈ Z

and cos β = \(\frac{c}{r}\) = \(\frac{c}{\sqrt{a^{2}  +  b^{2}}}\)

Note: If |c| > \(\sqrt{a^{2} + b^{2}}\), the given equation has no solution.                  

From the above discussion we observe that a cos θ + b sin θ = c can be solved  when |cos β| ≤ 1

⇒ |\(\frac{c}{\sqrt{a^{2}  +  b^{2}}}\)| ≤ 1

⇒ |c| ≤  \(\sqrt{a^{2} + b^{2}}\)


1. Solve the trigonometric equation √3 cos θ + sin θ = √2.

Solution:

√3 cos θ + sin θ = √2

This trigonometric equation is of the form a cos θ + b sin θ = c where a = √3, b = 1 and c = √2.

Let a  = r cos ∝ and b = r sin ∝ i.e., √3 = r cos ∝ and 1 = r sin ∝.

Then r = \(\sqrt{a^{2} + b^{2}}\) = \(\sqrt{(√3)^{2} + 1^{2}}\) = 2

and tan ∝ = \(\frac{1}{√3}\) ∝ = \(\frac{π}{6}\)

Substituting a = √3 = r cos ∝ and b = 1 = r sin ∝ in the given equation √3 cos θ + sin θ = √2 we get,

r cos ∝ cos θ + r sin ∝ sin θ = √2

r cos (θ - ∝) = √2

⇒ 2 cos (θ - \(\frac{π}{6}\)) = √2

⇒ cos (θ - \(\frac{π}{6}\)) = \(\frac{√2}{2}\)

⇒ cos (θ - \(\frac{π}{6}\)) = \(\frac{1}{√2}\)

cos (θ - \(\frac{π}{6}\)) = cos \(\frac{π}{4}\)

(θ - \(\frac{π}{6}\))= 2nπ ± \(\frac{π}{4}\), where  n = 0, ± 1, ± 2,………… 

θ = 2nπ ± \(\frac{π}{4}\) + \(\frac{π}{6}\), where  n = 0, ± 1, ± 2,………… 

θ = 2nπ + \(\frac{π}{4}\) + \(\frac{π}{6}\) or θ = 2nπ - \(\frac{π}{4}\) + \(\frac{π}{6}\), where  n = 0, ± 1, ± 2,………… 

θ = 2nπ + \(\frac{5π}{12}\) or θ = 2nπ - \(\frac{π}{12}\), where  n = 0, ± 1, ± 2,…………   


2. Solve √3 cos θ + sin θ = 1  (-2π < θ < 2π)

Solution: 

√3 cos θ + sin θ = 1

This trigonometric equation is of the form a cos θ + b sin θ = c where a = √3, b = 1 and c = 1.

Let a  = r cos ∝ and b = r sin ∝ i.e., √3 = r cos ∝ and 1 = r sin ∝.

Then r = \(\sqrt{a^{2} + b^{2}}\) = \(\sqrt{(√3)^{2} + 1^{2}}\) = 2

and tan ∝ = \(\frac{1}{√3}\) ⇒ ∝ = \(\frac{π}{6}\)

Substituting a = √3 = r cos ∝ and b = 1 = r sin ∝ in the given equation √3 cos θ + sin θ = √2 we get,

r cos ∝ cos θ + r sin ∝ sin θ = 1

⇒ r cos (θ - ∝) = 1

⇒ 2 cos (θ - \(\frac{π}{6}\)) = 1

⇒ cos (θ - \(\frac{π}{6}\)) = \(\frac{1}{2}\)

 cos (θ - \(\frac{π}{6}\)) = cos \(\frac{π}{3}\)

 (θ - \(\frac{π}{6}\))= 2nπ ± \(\frac{π}{3}\), where  n = 0, ± 1, ± 2, …………  

⇒ θ = 2nπ ± \(\frac{π}{3}\) + \(\frac{π}{6}\)where  n = 0, ± 1, ± 2, ………… 

⇒ Either, θ = 2nπ + \(\frac{π}{3}\) + \(\frac{π}{6}\) (4n + 1)\(\frac{π}{2}\)  ………..(1) or, θ = 2nπ - \(\frac{π}{3}\) + \(\frac{π}{6}\) = 2nπ - \(\frac{π}{6}\)  ………..(2)  Where 0, ± 1, ± 2, …………  

Now, putting n = 0 in equation (1) we get, θ = \(\frac{π}{2}\),

Putting n = 1 in equation (1) we get, θ = \(\frac{5π}{2}\),

Putting  n = -1 in equation (1) we get, θ = - \(\frac{3π}{2}\)

and putting  n = 0  in equation (2) we get, θ = - \(\frac{π}{6}\)

Putting n = 1 in equation (2) we get, θ = \(\frac{11π}{6}\) 

Putting n = -1 in equation (2) we get, θ = - \(\frac{13π}{6}\)

Therefore,the  required solution of the trigonometric equation √3 cos θ + sin θ = 1 in -2π < θ < 2π are θ = \(\frac{π}{2}\), - \(\frac{π}{6}\), - \(\frac{3π}{2}\)\(\frac{11π}{6}\).

 Trigonometric Equations







11 and 12 Grade Math

From a cos θ + b sin θ = c to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Adding 1-Digit Number | Understand the Concept one Digit Number

    Sep 18, 24 03:29 PM

    Add by Counting Forward
    Understand the concept of adding 1-digit number with the help of objects as well as numbers.

    Read More

  2. Addition of Numbers using Number Line | Addition Rules on Number Line

    Sep 18, 24 02:47 PM

    Addition Using the Number Line
    Addition of numbers using number line will help us to learn how a number line can be used for addition. Addition of numbers can be well understood with the help of the number line.

    Read More

  3. Counting Before, After and Between Numbers up to 10 | Number Counting

    Sep 17, 24 01:47 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  4. Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

    Sep 17, 24 12:10 AM

    Reading 3-digit Numbers
    Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

    Read More

  5. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    Sep 16, 24 11:24 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More