a cos θ + b sin θ = c

Trigonometric equations of the form a cos theta plus b sin theta equals c (i.e. a cos θ + b sin θ = c) where a, b, c are constants (a, b, c ∈ R) and |c| ≤ \(\sqrt{a^{2} + b^{2}}\).

To solve this type of questions, we first reduce them in the form cos θ = cos α or sin θ = sin α.

We use the following ways to solve the equations of the form a cos θ + b sin θ = c.

(i) First write the equation a cos θ + b sin θ = c.

(ii) Let a = r cos ∝ and b = r sin ∝ where, r > 0 and - \(\frac{π}{2}\) ≤ ∝ ≤ \(\frac{π}{2}\).

Now, a\(^{2}\) + b\(^{2}\) = r\(^{2}\) cos\(^{2}\) ∝ + r\(^{2}\) sin\(^{2}\) ∝ = r\(^{2}\) (cos\(^{2}\) ∝ + sin\(^{2}\) ∝) = r\(^{2}\)

or, r =  \(\sqrt{a^{2} + b^{2}}\)

 and tan ∝ = \(\frac{r  sin  ∝}{r  cos  ∝}\) = \(\frac{b}{a}\) i.e. ∝ = tan\(^{-1}\) (\(\frac{b}{a}\)).

(iii) Using the substitution in step (ii), the equation reduce to r cos (θ - ∝) = c

⇒ cos  (θ - ∝) = \(\frac{c}{r}\) = cos β

 Now, putting the value of a and b in a cos θ + b sin θ = c we get,

r cos ∝ cos θ + r sin ∝ sin θ = c       

⇒ r cos (θ - ∝) = c

⇒ cos (θ - ∝) = \(\frac{c}{r}\) = cos β          (say)

(iv) Solve the equation obtained in step (iii) by using the formula of cos θ = cos ∝.

cos (θ - ∝) = cos β         

Therefore, θ - ∝ = 2nπ ± β                 

⇒ θ = 2nπ ± β + ∝ where n ∈ Z

and cos β = \(\frac{c}{r}\) = \(\frac{c}{\sqrt{a^{2}  +  b^{2}}}\)

Note: If |c| > \(\sqrt{a^{2} + b^{2}}\), the given equation has no solution.                  

From the above discussion we observe that a cos θ + b sin θ = c can be solved  when |cos β| ≤ 1

⇒ |\(\frac{c}{\sqrt{a^{2}  +  b^{2}}}\)| ≤ 1

⇒ |c| ≤  \(\sqrt{a^{2} + b^{2}}\)


1. Solve the trigonometric equation √3 cos θ + sin θ = √2.

Solution:

√3 cos θ + sin θ = √2

This trigonometric equation is of the form a cos θ + b sin θ = c where a = √3, b = 1 and c = √2.

Let a  = r cos ∝ and b = r sin ∝ i.e., √3 = r cos ∝ and 1 = r sin ∝.

Then r = \(\sqrt{a^{2} + b^{2}}\) = \(\sqrt{(√3)^{2} + 1^{2}}\) = 2

and tan ∝ = \(\frac{1}{√3}\) ∝ = \(\frac{π}{6}\)

Substituting a = √3 = r cos ∝ and b = 1 = r sin ∝ in the given equation √3 cos θ + sin θ = √2 we get,

r cos ∝ cos θ + r sin ∝ sin θ = √2

r cos (θ - ∝) = √2

⇒ 2 cos (θ - \(\frac{π}{6}\)) = √2

⇒ cos (θ - \(\frac{π}{6}\)) = \(\frac{√2}{2}\)

⇒ cos (θ - \(\frac{π}{6}\)) = \(\frac{1}{√2}\)

cos (θ - \(\frac{π}{6}\)) = cos \(\frac{π}{4}\)

(θ - \(\frac{π}{6}\))= 2nπ ± \(\frac{π}{4}\), where  n = 0, ± 1, ± 2,………… 

θ = 2nπ ± \(\frac{π}{4}\) + \(\frac{π}{6}\), where  n = 0, ± 1, ± 2,………… 

θ = 2nπ + \(\frac{π}{4}\) + \(\frac{π}{6}\) or θ = 2nπ - \(\frac{π}{4}\) + \(\frac{π}{6}\), where  n = 0, ± 1, ± 2,………… 

θ = 2nπ + \(\frac{5π}{12}\) or θ = 2nπ - \(\frac{π}{12}\), where  n = 0, ± 1, ± 2,…………   


2. Solve √3 cos θ + sin θ = 1  (-2π < θ < 2π)

Solution: 

√3 cos θ + sin θ = 1

This trigonometric equation is of the form a cos θ + b sin θ = c where a = √3, b = 1 and c = 1.

Let a  = r cos ∝ and b = r sin ∝ i.e., √3 = r cos ∝ and 1 = r sin ∝.

Then r = \(\sqrt{a^{2} + b^{2}}\) = \(\sqrt{(√3)^{2} + 1^{2}}\) = 2

and tan ∝ = \(\frac{1}{√3}\) ⇒ ∝ = \(\frac{π}{6}\)

Substituting a = √3 = r cos ∝ and b = 1 = r sin ∝ in the given equation √3 cos θ + sin θ = √2 we get,

r cos ∝ cos θ + r sin ∝ sin θ = 1

⇒ r cos (θ - ∝) = 1

⇒ 2 cos (θ - \(\frac{π}{6}\)) = 1

⇒ cos (θ - \(\frac{π}{6}\)) = \(\frac{1}{2}\)

 cos (θ - \(\frac{π}{6}\)) = cos \(\frac{π}{3}\)

 (θ - \(\frac{π}{6}\))= 2nπ ± \(\frac{π}{3}\), where  n = 0, ± 1, ± 2, …………  

⇒ θ = 2nπ ± \(\frac{π}{3}\) + \(\frac{π}{6}\)where  n = 0, ± 1, ± 2, ………… 

⇒ Either, θ = 2nπ + \(\frac{π}{3}\) + \(\frac{π}{6}\) (4n + 1)\(\frac{π}{2}\)  ………..(1) or, θ = 2nπ - \(\frac{π}{3}\) + \(\frac{π}{6}\) = 2nπ - \(\frac{π}{6}\)  ………..(2)  Where 0, ± 1, ± 2, …………  

Now, putting n = 0 in equation (1) we get, θ = \(\frac{π}{2}\),

Putting n = 1 in equation (1) we get, θ = \(\frac{5π}{2}\),

Putting  n = -1 in equation (1) we get, θ = - \(\frac{3π}{2}\)

and putting  n = 0  in equation (2) we get, θ = - \(\frac{π}{6}\)

Putting n = 1 in equation (2) we get, θ = \(\frac{11π}{6}\) 

Putting n = -1 in equation (2) we get, θ = - \(\frac{13π}{6}\)

Therefore,the  required solution of the trigonometric equation √3 cos θ + sin θ = 1 in -2π < θ < 2π are θ = \(\frac{π}{2}\), - \(\frac{π}{6}\), - \(\frac{3π}{2}\)\(\frac{11π}{6}\).

 Trigonometric Equations







11 and 12 Grade Math

From a cos θ + b sin θ = c to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Highest Common Factor | HCF | GCD|Prime Factorization Method

    Mar 24, 25 03:40 PM

    Find the H.C.F. of 12, 36, 48
    The highest common factor (H.C.F.) of two or more numbers is the highest or greatest common number or divisor which divides each given number exactly. Hence, it is also called Greatest Common Divisor…

    Read More

  2. 5th Grade Factors and Multiples | Definitions | Solved Examples | Math

    Mar 23, 25 02:39 PM

    Prime Factor of 312
    Here we will discuss how factors and multiples are related to each other in math. A factor of a number is a divisor which divides the dividend exactly. A factor of a number which is a prime number is…

    Read More

  3. Adding 2-Digit Numbers | Add Two Two-Digit Numbers without Carrying

    Mar 23, 25 12:43 PM

    Adding 2-Digit Numbers Using an Abacus
    Here we will learn adding 2-digit numbers without regrouping and start working with easy numbers to get acquainted with the addition of two numbers.

    Read More

  4. Worksheet on 12 Times Table | Printable Multiplication Table | Video

    Mar 23, 25 10:28 AM

    worksheet on multiplication of 12 times table
    Worksheet on 12 times table can be printed out. Homeschoolers can also use these multiplication table sheets to practice at home.

    Read More

  5. Vertical Subtraction | Examples | Word Problems| Video |Column Method

    Mar 22, 25 05:20 PM

    Vertical Subtraction
    Vertical subtraction of 1-digit number are done by arranging the numbers column wise i.e., one number under the other number. How to subtract 1-digit number vertically?

    Read More