We will learn how to solve different types of problems on trigonometric equation containing one or many trig functions. First we need to solve the trigonometric function (if required) and then solve for the angle value using the trigonometric equation formulas.

**1.** Solve the equation sec θ - csc θ = 4/3

**Solution:**

sec θ - csc θ = 4/3

⇒ \(\frac{1}{cos θ}\) - \(\frac{1}{sin θ}\) = 4/3

⇒ \(\frac{sin θ - cos θ}{sin θ cos θ}\) = 4/3

⇒ 3 (sin θ - cos θ) = 4 sin θ cos θ

⇒ 3 (sin θ - cos θ) = 2 sin 2θ

⇒ [3 (sin θ - cos θ)]\(^{2}\) = (2 sin 2θ)\(^{2}\), [Squaring both sides]

⇒ 9 (sin\(^{2}\) θ - 2 sin θ cos θ + cos\(^{2}\)
θ) = 4 sin\(^{2}\) 2θ

⇒ 9 (sin\(^{2}\) θ + cos\(^{2}\) θ - 2 sin θ cos θ) = 4 sin\(^{2}\) 2θ

⇒ 9 (1 - 2 sin θ cos θ) = 4 sin\(^{2}\) 2θ

⇒ 4 sin\(^{2}\) 2θ + 9 sin 2θ - 9 = 0

⇒ (4 sin 2θ - 3)(sin 2θ + 3) = 0

⇒ 4 sin 2θ - 3 = 0 or sin 2θ + 3 = 0

⇒ sin 2θ = ¾ or sin 2θ = -3

but sin 2θ = -3 is not possible.

Therefore, sin 2θ = ¾ = sin ∝ (say)

⇒ 2θ = nπ + (-1)\(^{n}\) ∝, where, n = 0, ± 1, ± 2, ± 3, ± 4 ..... and sin ∝ = ¾

⇒ θ = \(\frac{nπ}{2}\) + (-1)\(^{n}\) \(\frac{∝}{2}\), where, n = 0, ± 1, ± 2, ± 3, ± 4 ..... and sin ∝ = ¾

Therefore, the required solution θ = \(\frac{nπ}{2}\) + (-1)\(^{n}\) \(\frac{∝}{2}\), where, n = 0, ± 1, ± 2, ± 3, ± 4 ..... and sin ∝ = ¾

**2.** Find general solution of the
equation cos 4θ = sin 3θ.

**Solution:
**

cos 4θ = sin 3θ

⇒ cos 4θ = cos (\(\frac{π}{2}\) - 3θ)

Therefore, 4θ = 2nπ ± (\(\frac{π}{2}\) - 3θ)

Therefore, either 4θ = 2nπ + \(\frac{π}{2}\) - 3θ Or, 4θ = 2nπ - \(\frac{π}{2}\) + 3x

⇒ 7θ = (4n + 1)\(\frac{π}{2}\) or, θ = (4n - 1)\(\frac{π}{2}\)

⇒ θ = (4n + 1)\(\frac{π}{14}\) or, θ = (4n - 1)\(\frac{π}{2}\)

Therefore the general solution of the equation cos 4θ = sin 3θ are θ = (4n + 1)\(\frac{π}{14}\)and θ = (4n - 1)\(\frac{π}{2}\) , where, n = 0, ±1, ±2, …………………..

**General solution of the equation sin x = ½****General solution of the equation cos x = 1/√2****G****eneral solution of the equation tan x = √3****General Solution of the Equation sin θ = 0****General Solution of the Equation cos θ = 0****General Solution of the Equation tan θ = 0****General Solution of the Equation sin θ = sin ∝****General Solution of the Equation sin θ = 1****General Solution of the Equation sin θ = -1****General Solution of the Equation cos θ = cos ∝****General Solution of the Equation cos θ = 1****General Solution of the Equation cos θ = -1****General Solution of the Equation tan θ = tan ∝****General Solution of a cos θ + b sin θ = c****Trigonometric Equation Formula****Trigonometric Equation using Formula****General solution of Trigonometric Equation****Problems on Trigonometric Equation**

**11 and 12 Grade Math**

**From Problems on Trigonometric Equation to HOME PAGE**

**Didn't find what you were looking for? Or want to know more information
about Math Only Math.
Use this Google Search to find what you need.**

## New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.