tan θ = 0

How to find the general solution of the equation tan θ = 0?

Prove that the general solution of tan θ = 0 is θ = nπ, n ∈ Z.

Solution:

According to the figure, by definition, we have,

Tangent function is defined as the ratio of the side perpendicular divided by the adjacent.

Let O be the centre of a unit circle. We know that in unit circle, the length of the circumference is 2π.

If we started from A and moves in anticlockwise direction then at the points A, B, A', B' and A, the arc length travelled are 0, \(\frac{π}{2}\), π, \(\frac{3π}{2}\), and 2π.

tan θ = \(\frac{PM}{OM}\)

Now, tan θ = 0

⇒ \(\frac{PM}{OM}\) = 0

⇒ PM = 0.

So when will the tangent be equal to zero?

Clearly, if PM = 0 then the final arm OP of the angle θ coincides with OX or OX'.

Similarly, the final arm OP coincides with OX or OX' when θ = π, 2π, 3π, 4π, ……….. , - π, -2π, -3π, -4π, ……….. i.e. when θ an integral multiples of π i.e., when θ = nπ where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3,…….)

Hence, θ = nπ, n ∈ Z is the general solution of the given equation tan θ = 0


1. Find the general solution of the equation tan 2x = 0

Solution:

tan 2x = 0

⇒ 2x = nπ, where, n = 0, ± 1, ± 2, ± 3, ……. [Since, we know that the general solution of the given equation tan θ = 0 is nπ, where, n = 0, ± 1, ± 2, ± 3, ……. ]

x = \(\frac{nπ}{2}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solution of the trigonometric equation tan 2x = 0 is
x = \(\frac{nπ}{2}\), where, n = 0, ± 1, ± 2, ± 3, …….


2. Find the general solution of the equation tan \(\frac{x}{2}\) = 0

Solution:

tan \(\frac{x}{2}\) = 0

\(\frac{x}{2}\) = nπ, where, n = 0, ± 1, ± 2, ± 3, ……. [Since, we know that the general solution of the given equation tan θ = 0 is nπ, where, n = 0, ± 1, ± 2, ± 3, ……. ]

x = 2nπ, where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solution of the trigonometric equation tan \(\frac{x}{2}\) = 0 is
x = 2nπ, where, n = 0, ± 1, ± 2, ± 3, …….


3. What is the general solution of the equation tan x + tan 2x + tan 3x = tan x tan 2x tan 3x?

Solution:

tan x + tan 2x + tan 3x = tan x tan 2x tan 3x

⇒ tan x + tan 2x = - tan 3x + tan x tan 2x tan 3x

⇒ tan x + tan 2x = - tan 3x(1 - tan x tan 2x)

⇒ \(\frac{tan x + tan 2x}{1 - tan x tan 2x}\) = - tan 3x

⇒ tan (x + 2x) = - tan 3x

⇒ tan 3x = - tan 3x

⇒ 2 tan 3x = 0

⇒ tan 3x = 0

⇒ 3x = nπ, where n = 0, ± 1, ± 2, ± 3,…….

 x = \(\frac{nπ}{3}\), where n = 0, ± 1, ± 2, ± 3,…….

Therefore, the general solution of the trigonometric equation tan x + tan 2x + tan 3x = tan x tan 2x tan 3x is x = \(\frac{nπ}{3}\), where n = 0, ± 1, ± 2, ± 3,…….


4. Find the general solution of the equation tan \(\frac{3x}{4}\) = 0

Solution:

tan \(\frac{3x}{4}\) = 0

⇒ \(\frac{3x}{4}\) = nπ, where, n = 0, ± 1, ± 2, ± 3, ……. [Since, we know that the general solution of the given equation tan θ = 0 is nπ, where, n = 0, ± 1, ± 2, ± 3, ……. ]

⇒ x = \(\frac{4nπ}{3}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solution of the trigonometric equation tan \(\frac{3x}{4}\) = 0 is x = \(\frac{4nπ}{3}\), where, n = 0, ± 1, ± 2, ± 3, …….

 Trigonometric Equations






11 and 12 Grade Math 

From tan θ = 0 to HOME PAGE







11 and 12 Grade Math

From tan θ = 0 to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More