Subscribe to our YouTube channel for the latest videos, updates, and tips.


cos θ = 0

How to find the general solution of the equation cos θ = 0?

Prove that the general solution of cos θ = 0 is θ = (2n + 1)\(\frac{π}{2}\), n ∈ Z

Solution:

According to the figure, by definition, we have,

Cosine function is defined as the ratio of the side adjacent divided by the hypotenuse.

Let O be the centre of a unit circle. We know that in unit circle, the length of the circumference is 2π.

If we started from A and moves in anticlockwise direction then at the points A, B, A', B' and A, the arc length travelled are 0, \(\frac{π}{2}\), π, \(\frac{3π}{2}\), and 2π.

Therefore, from the above unit circle it is clear that 

cos θ = \(\frac{OM}{OP}\)

Now, cos θ = 0

⇒ \(\frac{OM}{OP}\) = 0

⇒ OM = 0.

So when will the cosine be equal to zero?

Clearly, if OM = 0 then the final arm OP of the angle θ coincides with OY or OY'.

Similarly, the final arm OP coincides with OY or OY' when θ = \(\frac{π}{2}\), \(\frac{3π}{2}\), \(\frac{5π}{2}\), \(\frac{7π}{2}\), ……….. , -\(\frac{π}{2}\), -\(\frac{3π}{2}\), -\(\frac{5π}{2}\), -\(\frac{7π}{2}\), ……….. i.e. when θ is  an odd  multiple  of \(\frac{π}{2}\)  i.e., when θ = (2n + 1)\(\frac{π}{2}\), where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3, …….)

Hence, θ = (2n + 1)\(\frac{π}{2}\), n ∈ Z is the general solution of the given equation cos θ = 0


1. Find the general solution of the trigonometric equation cos 3x = 0

Solution:

cos 3x = 0

⇒ 3x = (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. [Since, we know that the general solution of the given equation cos θ = 0 is (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. ]

⇒ x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solution of the trigonometric equation cos 3x = 0 is x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….


2. Find the general solution of the trigonometric equation cos \(\frac{3x}{2}\) = 0

Solution:

cos 3x = 0

⇒ 3x = (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. [Since, we know that the general solution of the given equation cos θ = 0 is (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. ]

⇒ x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solution of the trigonometric equation cos 3x = 0 is x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

3. Find the general solutions of the equation 2 sin\(^{2}\) θ + sin\(^{2}\) 2θ = 2

Solution:

2 sin\(^{2}\) θ + sin\(^{2}\) 2θ = 2                    

⇒ sin\(^{2}\) 2θ + 2 sin\(^{2}\) θ - 2  = 0

4 sin\(^{2}\) θ cos\(^{2}\) θ - 2 (1 - sin\(^{2}\) θ) = 0

2 sin\(^{2}\) θ cos\(^{2}\) θ - cos\(^{2}\) θ = 0

cos\(^{2}\) θ (2 sin\(^{2}\) θ - 1) = 0

cos\(^{2}\) θ (1 - 2 sin\(^{2}\) θ) = 0

cos\(^{2}\) θ cos 2θ = 0

⇒  either cos\(^{2}\) θ = 0 or, cos 2θ = 0 

cos θ = 0 or, cos 2θ = 0 

⇒ θ = (2n + 1)\(\frac{π}{2}\)  or, 2θ = (2n + 1)\(\frac{π}{2}\) i.e., θ = (2n + 1)\(\frac{π}{2}\)

Therefore, the general solutions of the equation 2 sin\(^{2}\) θ + sin\(^{2}\) 2θ = 2 are  θ = (2n + 1)\(\frac{π}{2}\) and θ = (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, …….


4. Find the general solution of the trigonometric equation cos\(^{2}\) 3x = 0

Solution:

cos\(^{2}\) 3x = 0

cos 3x = 0

⇒ 3x = (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. [Since, we know that the general solution of the given equation cos θ = 0 is (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. ]

x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solution of the trigonometric equation cos 3x\(^{2}\) = 0 is x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….


5. What is the general solution of the trigonometric equation sin\(^{8}\) x + cos\(^{8}\) x =  \(\frac{17}{32}\)?

Solution:

(sin\(^{4}\) x + cos\(^{4}\) x)\(^{2}\) – 2 sin\(^{4}\) x  cos\(^{4}\) x =  \(\frac{17}{32}\)

[(sin\(^{2}\) x + cos\(^{2}\) x)\(^{2}\) - 2 sin\(^{2}\) x  cos\(^{2}\) x]\(^{2}\) -  \(\frac{(2 sinx cosx)^{4}}{8}\) = \(\frac{17}{32}\)

[1-  \(\frac{1}{2}\)sin\(^{2}\) 2x ]2  -  \(\frac{1}{8}\)sin\(^{4}\) 2x = \(\frac{17}{32}\)

32 [1- sin\(^{2}\) 2x +  \(\frac{1}{4}\) sin\(^{4}\) 2x] - 4  sin\(^{4}\) 2x = 17 

32 - 32 sin\(^{2}\) 2x + 8 sin\(^{4}\) 2x - 4 sin\(^{4}\) 2x – 17 = 0

4 sin\(^{4}\) 2x  - 32 sin\(^{2}\) 2x + 15 = 0

4 sin\(^{4}\) 2x -  2 sin\(^{2}\) 2x – 30 sin\(^{2}\) 2x + 15 = 0

2 sin\(^{2}\) 2x (2 sin\(^{2}\) 2x - 1) – 15 (2 sin\(^{2}\) 2x - 1) = 0

(2 sin\(^{2}\) 2x - 1) (2 sin\(^{2}\) 2x - 15) = 0

Therefore,

either, 2 sin\(^{2}\) 2x - 1 = 0 ……….(1) or, 2 sin\(^{2}\) 2x - 15  = 0 …………(2)

Now, from (1) we get,

 1 - 2 sin\(^{2}\) 2x = 0

  cos 4x = 0 

4x = (2n + 1)\(\frac{π}{2}\), where, n ∈ Z   

x = (2n + 1)\(\frac{π}{8}\), where, n ∈ Z

Again, from (2) we get, 2 sin\(^{2}\) 2x = 15

sin\(^{2}\) 2x =  \(\frac{15}{2}\) which is impossible, since the numerical value of sin 2x cannot  be  greater  than 1.

Therefore, the required general solution is: x = (2n + 1)\(\frac{π}{8}\), where, n ∈ Z

 Trigonometric Equations








11 and 12 Grade Math

From cos θ = 0 to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Math Problem Answers | Solved Math Questions and Answers | Free Math

    May 21, 25 12:45 PM

    Partial fraction
    Math problem answers are solved here step-by-step to keep the explanation clear to the students. In Math-Only-Math you'll find abundant selection of all types of math questions for all the grades

    Read More

  2. Test of Divisibility | Divisibility Rules| Divisible by 2, 3, 5, 9, 10

    May 21, 25 10:29 AM

    The test of divisibility by a number ‘x’ is a short-cut method to detect whether a particular number ‘y’ is divisible by the number ‘x’ or not. Test of divisibility by 2: A number is divisible by 2

    Read More

  3. Divisible by 7 | Test of Divisibility by 7 |Rules of Divisibility by 7

    May 21, 25 10:17 AM

    Divisible by 7
    Divisible by 7 is discussed below: We need to double the last digit of the number and then subtract it from the remaining number. If the result is divisible by 7, then the original number will also be

    Read More

  4. Average Word Problems | Worksheet on Average Questions with Answers

    May 20, 25 05:40 PM

    In average word problems we will solve different types of problems on basic concept of average. 1. Richard scored 80, 53, 19, 77, 29 and 96 runs in 6 innings in a series. Find the average runs scored…

    Read More

  5. Worksheet on Average | Word Problem on Average | Questions on Average

    May 19, 25 02:53 PM

    Worksheet on Average
    In worksheet on average we will solve different types of questions on the concept of average, calculating the average of the given quantities and application of average in different problems.

    Read More