# cos θ = 0

How to find the general solution of the equation cos θ = 0?

Prove that the general solution of cos θ = 0 is θ = (2n + 1)$$\frac{π}{2}$$, n ∈ Z

Solution:

According to the figure, by definition, we have,

Cosine function is defined as the ratio of the side adjacent divided by the hypotenuse.

Let O be the centre of a unit circle. We know that in unit circle, the length of the circumference is 2π.

If we started from A and moves in anticlockwise direction then at the points A, B, A', B' and A, the arc length travelled are 0, $$\frac{π}{2}$$, π, $$\frac{3π}{2}$$, and 2π.

Therefore, from the above unit circle it is clear that

cos θ = $$\frac{OM}{OP}$$

Now, cos θ = 0

⇒ $$\frac{OM}{OP}$$ = 0

⇒ OM = 0.

So when will the cosine be equal to zero?

Clearly, if OM = 0 then the final arm OP of the angle θ coincides with OY or OY'.

Similarly, the final arm OP coincides with OY or OY' when θ = $$\frac{π}{2}$$, $$\frac{3π}{2}$$, $$\frac{5π}{2}$$, $$\frac{7π}{2}$$, ……….. , -$$\frac{π}{2}$$, -$$\frac{3π}{2}$$, -$$\frac{5π}{2}$$, -$$\frac{7π}{2}$$, ……….. i.e. when θ is  an odd  multiple  of $$\frac{π}{2}$$  i.e., when θ = (2n + 1)$$\frac{π}{2}$$, where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3, …….)

Hence, θ = (2n + 1)$$\frac{π}{2}$$, n ∈ Z is the general solution of the given equation cos θ = 0

1. Find the general solution of the trigonometric equation cos 3x = 0

Solution:

cos 3x = 0

⇒ 3x = (2n + 1)$$\frac{π}{2}$$, where, n = 0, ± 1, ± 2, ± 3, ……. [Since, we know that the general solution of the given equation cos θ = 0 is (2n + 1)$$\frac{π}{2}$$, where, n = 0, ± 1, ± 2, ± 3, ……. ]

⇒ x = (2n + 1)$$\frac{π}{6}$$, where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solution of the trigonometric equation cos 3x = 0 is x = (2n + 1)$$\frac{π}{6}$$, where, n = 0, ± 1, ± 2, ± 3, …….

2. Find the general solution of the trigonometric equation cos $$\frac{3x}{2}$$ = 0

Solution:

cos 3x = 0

⇒ 3x = (2n + 1)$$\frac{π}{2}$$, where, n = 0, ± 1, ± 2, ± 3, ……. [Since, we know that the general solution of the given equation cos θ = 0 is (2n + 1)$$\frac{π}{2}$$, where, n = 0, ± 1, ± 2, ± 3, ……. ]

⇒ x = (2n + 1)$$\frac{π}{6}$$, where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solution of the trigonometric equation cos 3x = 0 is x = (2n + 1)$$\frac{π}{6}$$, where, n = 0, ± 1, ± 2, ± 3, …….

3. Find the general solutions of the equation 2 sin$$^{2}$$ θ + sin$$^{2}$$ 2θ = 2

Solution:

2 sin$$^{2}$$ θ + sin$$^{2}$$ 2θ = 2

⇒ sin$$^{2}$$ 2θ + 2 sin$$^{2}$$ θ - 2  = 0

4 sin$$^{2}$$ θ cos$$^{2}$$ θ - 2 (1 - sin$$^{2}$$ θ) = 0

2 sin$$^{2}$$ θ cos$$^{2}$$ θ - cos$$^{2}$$ θ = 0

cos$$^{2}$$ θ (2 sin$$^{2}$$ θ - 1) = 0

cos$$^{2}$$ θ (1 - 2 sin$$^{2}$$ θ) = 0

cos$$^{2}$$ θ cos 2θ = 0

⇒  either cos$$^{2}$$ θ = 0 or, cos 2θ = 0

cos θ = 0 or, cos 2θ = 0

⇒ θ = (2n + 1)$$\frac{π}{2}$$  or, 2θ = (2n + 1)$$\frac{π}{2}$$ i.e., θ = (2n + 1)$$\frac{π}{2}$$

Therefore, the general solutions of the equation 2 sin$$^{2}$$ θ + sin$$^{2}$$ 2θ = 2 are  θ = (2n + 1)$$\frac{π}{2}$$ and θ = (2n + 1)$$\frac{π}{2}$$, where, n = 0, ± 1, ± 2, ± 3, …….

4. Find the general solution of the trigonometric equation cos$$^{2}$$ 3x = 0

Solution:

cos$$^{2}$$ 3x = 0

cos 3x = 0

⇒ 3x = (2n + 1)$$\frac{π}{2}$$, where, n = 0, ± 1, ± 2, ± 3, ……. [Since, we know that the general solution of the given equation cos θ = 0 is (2n + 1)$$\frac{π}{2}$$, where, n = 0, ± 1, ± 2, ± 3, ……. ]

x = (2n + 1)$$\frac{π}{6}$$, where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solution of the trigonometric equation cos 3x$$^{2}$$ = 0 is x = (2n + 1)$$\frac{π}{6}$$, where, n = 0, ± 1, ± 2, ± 3, …….

5. What is the general solution of the trigonometric equation sin$$^{8}$$ x + cos$$^{8}$$ x =  $$\frac{17}{32}$$?

Solution:

(sin$$^{4}$$ x + cos$$^{4}$$ x)$$^{2}$$ – 2 sin$$^{4}$$ x  cos$$^{4}$$ x =  $$\frac{17}{32}$$

[(sin$$^{2}$$ x + cos$$^{2}$$ x)$$^{2}$$ - 2 sin$$^{2}$$ x  cos$$^{2}$$ x]$$^{2}$$ -  $$\frac{(2 sinx cosx)^{4}}{8}$$ = $$\frac{17}{32}$$

[1-  $$\frac{1}{2}$$sin$$^{2}$$ 2x ]2  -  $$\frac{1}{8}$$sin$$^{4}$$ 2x = $$\frac{17}{32}$$

32 [1- sin$$^{2}$$ 2x +  $$\frac{1}{4}$$ sin$$^{4}$$ 2x] - 4  sin$$^{4}$$ 2x = 17

32 - 32 sin$$^{2}$$ 2x + 8 sin$$^{4}$$ 2x - 4 sin$$^{4}$$ 2x – 17 = 0

4 sin$$^{4}$$ 2x  - 32 sin$$^{2}$$ 2x + 15 = 0

4 sin$$^{4}$$ 2x -  2 sin$$^{2}$$ 2x – 30 sin$$^{2}$$ 2x + 15 = 0

2 sin$$^{2}$$ 2x (2 sin$$^{2}$$ 2x - 1) – 15 (2 sin$$^{2}$$ 2x - 1) = 0

(2 sin$$^{2}$$ 2x - 1) (2 sin$$^{2}$$ 2x - 15) = 0

Therefore,

either, 2 sin$$^{2}$$ 2x - 1 = 0 ……….(1) or, 2 sin$$^{2}$$ 2x - 15  = 0 …………(2)

Now, from (1) we get,

1 - 2 sin$$^{2}$$ 2x = 0

cos 4x = 0

4x = (2n + 1)$$\frac{π}{2}$$, where, n ∈ Z

x = (2n + 1)$$\frac{π}{8}$$, where, n ∈ Z

Again, from (2) we get, 2 sin$$^{2}$$ 2x = 15

sin$$^{2}$$ 2x =  $$\frac{15}{2}$$ which is impossible, since the numerical value of sin 2x cannot  be  greater  than 1.

Therefore, the required general solution is: x = (2n + 1)$$\frac{π}{8}$$, where, n ∈ Z

Trigonometric Equations

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Formation of Greatest and Smallest Numbers | Arranging the Numbers

May 19, 24 03:36 PM

the greatest number is formed by arranging the given digits in descending order and the smallest number by arranging them in ascending order. The position of the digit at the extreme left of a number…

2. ### Formation of Numbers with the Given Digits |Making Numbers with Digits

May 19, 24 03:19 PM

In formation of numbers with the given digits we may say that a number is an arranged group of digits. Numbers may be formed with or without the repetition of digits.

3. ### Arranging Numbers | Ascending Order | Descending Order |Compare Digits

May 19, 24 02:23 PM

We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

4. ### Comparison of Numbers | Compare Numbers Rules | Examples of Comparison

May 19, 24 01:26 PM

Rule I: We know that a number with more digits is always greater than the number with less number of digits. Rule II: When the two numbers have the same number of digits, we start comparing the digits…