cos θ = 0

How to find the general solution of the equation cos θ = 0?

Prove that the general solution of cos θ = 0 is θ = (2n + 1)\(\frac{π}{2}\), n ∈ Z

Solution:

According to the figure, by definition, we have,

Cosine function is defined as the ratio of the side adjacent divided by the hypotenuse.

Let O be the centre of a unit circle. We know that in unit circle, the length of the circumference is 2π.

If we started from A and moves in anticlockwise direction then at the points A, B, A', B' and A, the arc length travelled are 0, \(\frac{π}{2}\), π, \(\frac{3π}{2}\), and 2π.

Therefore, from the above unit circle it is clear that 

cos θ = \(\frac{OM}{OP}\)

Now, cos θ = 0

⇒ \(\frac{OM}{OP}\) = 0

⇒ OM = 0.

So when will the cosine be equal to zero?

Clearly, if OM = 0 then the final arm OP of the angle θ coincides with OY or OY'.

Similarly, the final arm OP coincides with OY or OY' when θ = \(\frac{π}{2}\), \(\frac{3π}{2}\), \(\frac{5π}{2}\), \(\frac{7π}{2}\), ……….. , -\(\frac{π}{2}\), -\(\frac{3π}{2}\), -\(\frac{5π}{2}\), -\(\frac{7π}{2}\), ……….. i.e. when θ is  an odd  multiple  of \(\frac{π}{2}\)  i.e., when θ = (2n + 1)\(\frac{π}{2}\), where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3, …….)

Hence, θ = (2n + 1)\(\frac{π}{2}\), n ∈ Z is the general solution of the given equation cos θ = 0


1. Find the general solution of the trigonometric equation cos 3x = 0

Solution:

cos 3x = 0

⇒ 3x = (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. [Since, we know that the general solution of the given equation cos θ = 0 is (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. ]

⇒ x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solution of the trigonometric equation cos 3x = 0 is x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….


2. Find the general solution of the trigonometric equation cos \(\frac{3x}{2}\) = 0

Solution:

cos 3x = 0

⇒ 3x = (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. [Since, we know that the general solution of the given equation cos θ = 0 is (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. ]

⇒ x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solution of the trigonometric equation cos 3x = 0 is x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

3. Find the general solutions of the equation 2 sin\(^{2}\) θ + sin\(^{2}\) 2θ = 2

Solution:

2 sin\(^{2}\) θ + sin\(^{2}\) 2θ = 2                    

⇒ sin\(^{2}\) 2θ + 2 sin\(^{2}\) θ - 2  = 0

4 sin\(^{2}\) θ cos\(^{2}\) θ - 2 (1 - sin\(^{2}\) θ) = 0

2 sin\(^{2}\) θ cos\(^{2}\) θ - cos\(^{2}\) θ = 0

cos\(^{2}\) θ (2 sin\(^{2}\) θ - 1) = 0

cos\(^{2}\) θ (1 - 2 sin\(^{2}\) θ) = 0

cos\(^{2}\) θ cos 2θ = 0

⇒  either cos\(^{2}\) θ = 0 or, cos 2θ = 0 

cos θ = 0 or, cos 2θ = 0 

⇒ θ = (2n + 1)\(\frac{π}{2}\)  or, 2θ = (2n + 1)\(\frac{π}{2}\) i.e., θ = (2n + 1)\(\frac{π}{2}\)

Therefore, the general solutions of the equation 2 sin\(^{2}\) θ + sin\(^{2}\) 2θ = 2 are  θ = (2n + 1)\(\frac{π}{2}\) and θ = (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, …….


4. Find the general solution of the trigonometric equation cos\(^{2}\) 3x = 0

Solution:

cos\(^{2}\) 3x = 0

cos 3x = 0

⇒ 3x = (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. [Since, we know that the general solution of the given equation cos θ = 0 is (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. ]

x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solution of the trigonometric equation cos 3x\(^{2}\) = 0 is x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….


5. What is the general solution of the trigonometric equation sin\(^{8}\) x + cos\(^{8}\) x =  \(\frac{17}{32}\)?

Solution:

(sin\(^{4}\) x + cos\(^{4}\) x)\(^{2}\) – 2 sin\(^{4}\) x  cos\(^{4}\) x =  \(\frac{17}{32}\)

[(sin\(^{2}\) x + cos\(^{2}\) x)\(^{2}\) - 2 sin\(^{2}\) x  cos\(^{2}\) x]\(^{2}\) -  \(\frac{(2 sinx cosx)^{4}}{8}\) = \(\frac{17}{32}\)

[1-  \(\frac{1}{2}\)sin\(^{2}\) 2x ]2  -  \(\frac{1}{8}\)sin\(^{4}\) 2x = \(\frac{17}{32}\)

32 [1- sin\(^{2}\) 2x +  \(\frac{1}{4}\) sin\(^{4}\) 2x] - 4  sin\(^{4}\) 2x = 17 

32 - 32 sin\(^{2}\) 2x + 8 sin\(^{4}\) 2x - 4 sin\(^{4}\) 2x – 17 = 0

4 sin\(^{4}\) 2x  - 32 sin\(^{2}\) 2x + 15 = 0

4 sin\(^{4}\) 2x -  2 sin\(^{2}\) 2x – 30 sin\(^{2}\) 2x + 15 = 0

2 sin\(^{2}\) 2x (2 sin\(^{2}\) 2x - 1) – 15 (2 sin\(^{2}\) 2x - 1) = 0

(2 sin\(^{2}\) 2x - 1) (2 sin\(^{2}\) 2x - 15) = 0

Therefore,

either, 2 sin\(^{2}\) 2x - 1 = 0 ……….(1) or, 2 sin\(^{2}\) 2x - 15  = 0 …………(2)

Now, from (1) we get,

 1 - 2 sin\(^{2}\) 2x = 0

  cos 4x = 0 

4x = (2n + 1)\(\frac{π}{2}\), where, n ∈ Z   

x = (2n + 1)\(\frac{π}{8}\), where, n ∈ Z

Again, from (2) we get, 2 sin\(^{2}\) 2x = 15

sin\(^{2}\) 2x =  \(\frac{15}{2}\) which is impossible, since the numerical value of sin 2x cannot  be  greater  than 1.

Therefore, the required general solution is: x = (2n + 1)\(\frac{π}{8}\), where, n ∈ Z

 Trigonometric Equations








11 and 12 Grade Math

From cos θ = 0 to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 12, 24 11:31 PM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  2. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More

  3. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 10:31 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  4. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  5. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More