cos θ = 0

How to find the general solution of the equation cos θ = 0?

Prove that the general solution of cos θ = 0 is θ = (2n + 1)\(\frac{π}{2}\), n ∈ Z

Solution:

According to the figure, by definition, we have,

Cosine function is defined as the ratio of the side adjacent divided by the hypotenuse.

Let O be the centre of a unit circle. We know that in unit circle, the length of the circumference is 2π.

If we started from A and moves in anticlockwise direction then at the points A, B, A', B' and A, the arc length travelled are 0, \(\frac{π}{2}\), π, \(\frac{3π}{2}\), and 2π.

Therefore, from the above unit circle it is clear that 

cos θ = \(\frac{OM}{OP}\)

Now, cos θ = 0

⇒ \(\frac{OM}{OP}\) = 0

⇒ OM = 0.

So when will the cosine be equal to zero?

Clearly, if OM = 0 then the final arm OP of the angle θ coincides with OY or OY'.

Similarly, the final arm OP coincides with OY or OY' when θ = \(\frac{π}{2}\), \(\frac{3π}{2}\), \(\frac{5π}{2}\), \(\frac{7π}{2}\), ……….. , -\(\frac{π}{2}\), -\(\frac{3π}{2}\), -\(\frac{5π}{2}\), -\(\frac{7π}{2}\), ……….. i.e. when θ is  an odd  multiple  of \(\frac{π}{2}\)  i.e., when θ = (2n + 1)\(\frac{π}{2}\), where n ∈ Z (i.e., n = 0, ± 1, ± 2, ± 3, …….)

Hence, θ = (2n + 1)\(\frac{π}{2}\), n ∈ Z is the general solution of the given equation cos θ = 0


1. Find the general solution of the trigonometric equation cos 3x = 0

Solution:

cos 3x = 0

⇒ 3x = (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. [Since, we know that the general solution of the given equation cos θ = 0 is (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. ]

⇒ x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solution of the trigonometric equation cos 3x = 0 is x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….


2. Find the general solution of the trigonometric equation cos \(\frac{3x}{2}\) = 0

Solution:

cos 3x = 0

⇒ 3x = (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. [Since, we know that the general solution of the given equation cos θ = 0 is (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. ]

⇒ x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solution of the trigonometric equation cos 3x = 0 is x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

3. Find the general solutions of the equation 2 sin\(^{2}\) θ + sin\(^{2}\) 2θ = 2

Solution:

2 sin\(^{2}\) θ + sin\(^{2}\) 2θ = 2                    

⇒ sin\(^{2}\) 2θ + 2 sin\(^{2}\) θ - 2  = 0

4 sin\(^{2}\) θ cos\(^{2}\) θ - 2 (1 - sin\(^{2}\) θ) = 0

2 sin\(^{2}\) θ cos\(^{2}\) θ - cos\(^{2}\) θ = 0

cos\(^{2}\) θ (2 sin\(^{2}\) θ - 1) = 0

cos\(^{2}\) θ (1 - 2 sin\(^{2}\) θ) = 0

cos\(^{2}\) θ cos 2θ = 0

⇒  either cos\(^{2}\) θ = 0 or, cos 2θ = 0 

cos θ = 0 or, cos 2θ = 0 

⇒ θ = (2n + 1)\(\frac{π}{2}\)  or, 2θ = (2n + 1)\(\frac{π}{2}\) i.e., θ = (2n + 1)\(\frac{π}{2}\)

Therefore, the general solutions of the equation 2 sin\(^{2}\) θ + sin\(^{2}\) 2θ = 2 are  θ = (2n + 1)\(\frac{π}{2}\) and θ = (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, …….


4. Find the general solution of the trigonometric equation cos\(^{2}\) 3x = 0

Solution:

cos\(^{2}\) 3x = 0

cos 3x = 0

⇒ 3x = (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. [Since, we know that the general solution of the given equation cos θ = 0 is (2n + 1)\(\frac{π}{2}\), where, n = 0, ± 1, ± 2, ± 3, ……. ]

x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….

Therefore, the general solution of the trigonometric equation cos 3x\(^{2}\) = 0 is x = (2n + 1)\(\frac{π}{6}\), where, n = 0, ± 1, ± 2, ± 3, …….


5. What is the general solution of the trigonometric equation sin\(^{8}\) x + cos\(^{8}\) x =  \(\frac{17}{32}\)?

Solution:

(sin\(^{4}\) x + cos\(^{4}\) x)\(^{2}\) – 2 sin\(^{4}\) x  cos\(^{4}\) x =  \(\frac{17}{32}\)

[(sin\(^{2}\) x + cos\(^{2}\) x)\(^{2}\) - 2 sin\(^{2}\) x  cos\(^{2}\) x]\(^{2}\) -  \(\frac{(2 sinx cosx)^{4}}{8}\) = \(\frac{17}{32}\)

[1-  \(\frac{1}{2}\)sin\(^{2}\) 2x ]2  -  \(\frac{1}{8}\)sin\(^{4}\) 2x = \(\frac{17}{32}\)

32 [1- sin\(^{2}\) 2x +  \(\frac{1}{4}\) sin\(^{4}\) 2x] - 4  sin\(^{4}\) 2x = 17 

32 - 32 sin\(^{2}\) 2x + 8 sin\(^{4}\) 2x - 4 sin\(^{4}\) 2x – 17 = 0

4 sin\(^{4}\) 2x  - 32 sin\(^{2}\) 2x + 15 = 0

4 sin\(^{4}\) 2x -  2 sin\(^{2}\) 2x – 30 sin\(^{2}\) 2x + 15 = 0

2 sin\(^{2}\) 2x (2 sin\(^{2}\) 2x - 1) – 15 (2 sin\(^{2}\) 2x - 1) = 0

(2 sin\(^{2}\) 2x - 1) (2 sin\(^{2}\) 2x - 15) = 0

Therefore,

either, 2 sin\(^{2}\) 2x - 1 = 0 ……….(1) or, 2 sin\(^{2}\) 2x - 15  = 0 …………(2)

Now, from (1) we get,

 1 - 2 sin\(^{2}\) 2x = 0

  cos 4x = 0 

4x = (2n + 1)\(\frac{π}{2}\), where, n ∈ Z   

x = (2n + 1)\(\frac{π}{8}\), where, n ∈ Z

Again, from (2) we get, 2 sin\(^{2}\) 2x = 15

sin\(^{2}\) 2x =  \(\frac{15}{2}\) which is impossible, since the numerical value of sin 2x cannot  be  greater  than 1.

Therefore, the required general solution is: x = (2n + 1)\(\frac{π}{8}\), where, n ∈ Z

 Trigonometric Equations








11 and 12 Grade Math

From cos θ = 0 to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Word Problems on Area and Perimeter | Free Worksheet with Answers

    Jul 26, 24 04:58 PM

    word problems on area and perimeter

    Read More

  2. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 26, 24 04:37 PM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  3. Perimeter and Area of Irregular Figures | Solved Example Problems

    Jul 26, 24 02:20 PM

    Perimeter of Irregular Figures
    Here we will get the ideas how to solve the problems on finding the perimeter and area of irregular figures. The figure PQRSTU is a hexagon. PS is a diagonal and QY, RO, TX and UZ are the respective d…

    Read More

  4. Perimeter and Area of Plane Figures | Definition of Perimeter and Area

    Jul 26, 24 11:50 AM

    Perimeter of a Triangle
    A plane figure is made of line segments or arcs of curves in a plane. It is a closed figure if the figure begins and ends at the same point. We are familiar with plane figures like squares, rectangles…

    Read More

  5. 5th Grade Math Problems | Table of Contents | Worksheets |Free Answers

    Jul 26, 24 01:35 AM

    In 5th grade math problems you will get all types of examples on different topics along with the solutions. Keeping in mind the mental level of child in Grade 5, every efforts has been made to introdu…

    Read More