2 sin x - 1 = 0

We will discuss about the general solution of the equation 2 sin x minus 1 equals 0 (i.e., 2 sin x - 1 = 0) or sin x equals half (i.e., sin x = ½).

How to find the general solution of the trigonometric equation sin x = ½ or 2 sin x - 1 = 0?

Solution:

We have,

2 sin x - 1 = 0

⇒ sin x = ½

⇒ sin x = sin \(\frac{π}{6}\)

⇒ sin x = sin (π  - \(\frac{π}{6}\))

⇒ sin x =  sin \(\frac{5π}{6}\) 

Let O be the center of a unit circle. We know that in unit circle, the length of the circumference is 2π.

If we started from A and moves in anticlockwise direction then at the points A, B, A', B' and A, the arc length travelled are 0, \(\frac{π}{2}\), π, \(\frac{3π}{2}\), and 2π.

Therefore, from the above unit circle it is clear that the final arm OP of the angle x lies either in the first or in the second.

If the final arm OP of the unit circle lies in the first quadrant, then

sin x = ½

⇒ sin x = sin \(\frac{π}{6}\)

⇒ sin x = sin (2nπ + \(\frac{π}{6}\)), Where n ∈ I (i.e., n = 0, ± 1, ± 2, ± 3,…….)

Therefore, x = 2nπ + \(\frac{π}{6}\) …………….. (i)

Again, if the final arm OP of the unit circle lies in the second quadrant, then        

sin x = ½

⇒ sin x = sin \(\frac{5π}{6}\) 

⇒ sin x = sin (2nπ + \(\frac{5π}{6}\)), Where n ∈ I (i.e., n = 0, ± 1, ± 2, ± 3,…….)

Therefore, x = 2nπ + \(\frac{5π}{6}\) …………….. (ii)  

Therefore, the general solution of equation sin x = ½ or 2 sin x - 1 = 0 are the infinite sets of value of x given in (i) and (ii). 

Hence general solution of 2 sin x - 1 = 0 is x = nπ + (-1)\(^{2}\) \(\frac{π}{6}\), n ∈ I

 Trigonometric Equations







11 and 12 Grade Math

From 2 sin x Minus 1 Equals 0 to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Method of H.C.F. |Highest Common Factor|Factorization &Division Method

    Apr 13, 24 05:12 PM

    HCF by Short Division Method
    We will discuss here about the method of h.c.f. (highest common factor). The highest common factor or HCF of two or more numbers is the greatest number which divides exactly the given numbers. Let us…

    Read More

  2. Factors | Understand the Factors of the Product | Concept of Factors

    Apr 13, 24 03:29 PM

    Factors
    Factors of a number are discussed here so that students can understand the factors of the product. What are factors? (i) If a dividend, when divided by a divisor, is divided completely

    Read More

  3. Methods of Prime Factorization | Division Method | Factor Tree Method

    Apr 13, 24 01:27 PM

    Factor Tree Method
    In prime factorization, we factorise the numbers into prime numbers, called prime factors. There are two methods of prime factorization: 1. Division Method 2. Factor Tree Method

    Read More

  4. Divisibility Rules | Divisibility Test|Divisibility Rules From 2 to 18

    Apr 13, 24 12:41 PM

    Divisibility Rules
    To find out factors of larger numbers quickly, we perform divisibility test. There are certain rules to check divisibility of numbers. Divisibility tests of a given number by any of the number 2, 3, 4…

    Read More

  5. Even and Odd Numbers Between 1 and 100 | Even and Odd Numbers|Examples

    Apr 12, 24 04:22 PM

    even and odd numbers
    All the even and odd numbers between 1 and 100 are discussed here. What are the even numbers from 1 to 100? The even numbers from 1 to 100 are:

    Read More