General solution of Trigonometric Equation

We will learn how to find the general solution of trigonometric equation of various forms using the identities and the different properties of trig functions.

For trigonometric equation involving powers, we need to solve the equation either by using quadratic formula or by factoring.

1. Find the general solution of the equation 2 sin\(^{3}\)  x - sin x = 1. Hence find the values between 0° and 360° satisfying the given equation.

Solution:

Since the given equation is a quadratic in sin x, we can solve for sin x either by factorization or by using quadratic formula.

Now, 2 sin\(^{3}\)  x - sin x = 1

⇒ 2 sin\(^{3}\) x - sin x - 1 = 0

⇒ 2 sin\(^{3}\)  x - 2sin x + sin x - 1 = 0

⇒ 2 sin x (sin x - 1) + 1 (sin x - 1) = 0

⇒ (2 sin x + 1)(sin x - 1) = 0

⇒ Either, 2 sin x + 1 = 0 or, sin x - 1 = 0

⇒ sin x = -1/2 or sin x = 1

⇒ sin x = \(\frac{7π}{6}\) or sin x = \(\frac{π}{2}\)

⇒ x = nπ + (-1)\(^{n}\)\(\frac{7π}{6}\) or x = nπ + (-1)\(^{n}\)\(\frac{π}{2}\), where n = 0, ± 1, ± 2, ± 3, …….

⇒ x = nπ + (-1)\(^{n}\)\(\frac{7π}{6}\) ⇒ x = …….., \(\frac{π}{6}\), \(\frac{7π}{6}\), \(\frac{11π}{6}\), \(\frac{19π}{6}\), ……..  or  x = nπ + (-1)\(^{n}\)\(\frac{π}{2}\) ⇒ x = …….., \(\frac{π}{2}\), \(\frac{5π}{2}\), ……..

Therefore the solution of the given equation between 0° and 360° are \(\frac{π}{2}\), \(\frac{7π}{6}\), \(\frac{11π}{6}\) i.e., 90°, 210°, 330°.

 

2. Solve the trigonometric equation sin\(^{3}\) x + cos\(^{3}\) x = 0 where 0° < x < 360°

Solution:

sin\(^{3}\) x + cos\(^{3}\) x = 0

⇒ tan\(^{3}\) x + 1 = 0, dividing both sides by cos x

⇒ tan\(^{3}\) x + 1\(^{3}\) = 0

⇒ (tan x + 1) (tan\(^{2}\) x - tan x + 1) = 0

Therefore, either, tan x + 1 = 0 ………. (i) or, tan\(^{2}\) x - tan θ + 1 = 0 ………. (ii)

From (i) we get,

tan x = -1

⇒ tan x = tan (-\(\frac{π}{4}\))

⇒ x = nπ - \(\frac{π}{4}\)

From (ii) we get,

tan\(^{2}\) x - tan θ + 1 = 0

⇒ tan x = \(\frac{1 \pm \sqrt{1 - 4\cdot 1\cdot 1}}{2\cdot 1}\)

⇒ tan x = \(\frac{1 \pm \sqrt{- 3}}{2}\)

Clearly, the value of tan x, are imaginary; hence, there is no real solution of x

Therefore, the required general solution of the given equation is:

x = nπ - \(\frac{π}{4}\) …………. (iii) where, n = 0, ±1, ±2, …………………. 

Now, putting n = 0 in (iii) we get, x = - 45°

Now, putting n = 1 in (iii) we get, x = π - \(\frac{π}{4}\) = 135°

Now, putting n = 2 in (iii) we get, x = π - \(\frac{π}{4}\) = 135°

Therefore, the solutions of the equation sin\(^{3}\)  x + cos\(^{3}\)  x = 0 in 0° < θ < 360° are x = 135°, 315°.


3. Solve the equation tan\(^{2}\) x = 1/3 where, -  π ≤ x ≤ π.

 Solution: 

tan 2x= \(\frac{1}{3}\)

⇒ tan x= ± \(\frac{1}{√3}\)

⇒ tan x = tan (±\(\frac{π}{6}\)) 

Therefore, x= nπ  ±  \(\frac{π}{6}\),  where  n = 0, ±1, ±2,………… 

When, n = 0 then x = ± \(\frac{π}{6}\) = \(\frac{π}{6}\) or,- \(\frac{π}{6}\)

If n = 1 then x = π ± \(\frac{π}{6}\) + \(\frac{5π}{6}\) or,- \(\frac{7π}{6}\)

If n = -1 then x = - π ± \(\frac{π}{6}\) =- \(\frac{7π}{6}\), - \(\frac{5π}{6}\)

Therefore, the required solutions in – π ≤ x ≤ π are x = \(\frac{π}{6}\), \(\frac{5π}{6}\), - \(\frac{π}{6}\), - \(\frac{5π}{6}\).

 Trigonometric Equations






11 and 12 Grade Math

From General solution of Trigonometric Equation to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Properties of Multiplication | Multiplicative Identity | Whole Numbers

    Mar 29, 24 09:02 AM

    Properties of Multiplication of Whole Numbers
    There are six properties of multiplication of whole numbers that will help to solve the problems easily. The six properties of multiplication are Closure Property, Commutative Property, Zero Property…

    Read More

  2. Multiplication of a Number by a 3-Digit Number |3-Digit Multiplication

    Mar 28, 24 06:33 PM

    Multiplying by 3-Digit Number
    In multiplication of a number by a 3-digit number are explained here step by step. Consider the following examples on multiplication of a number by a 3-digit number: 1. Find the product of 36 × 137

    Read More

  3. Multiply a Number by a 2-Digit Number | Multiplying 2-Digit by 2-Digit

    Mar 27, 24 05:21 PM

    Multiply 2-Digit Numbers by a 2-Digit Numbers
    How to multiply a number by a 2-digit number? We shall revise here to multiply 2-digit and 3-digit numbers by a 2-digit number (multiplier) as well as learn another procedure for the multiplication of…

    Read More

  4. Multiplication by 1-digit Number | Multiplying 1-Digit by 4-Digit

    Mar 26, 24 04:14 PM

    Multiplication by 1-digit Number
    How to Multiply by a 1-Digit Number We will learn how to multiply any number by a one-digit number. Multiply 2154 and 4. Solution: Step I: Arrange the numbers vertically. Step II: First multiply the d…

    Read More

  5. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Mar 25, 24 05:36 PM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More