General solution of Trigonometric Equation

We will learn how to find the general solution of trigonometric equation of various forms using the identities and the different properties of trig functions.

For trigonometric equation involving powers, we need to solve the equation either by using quadratic formula or by factoring.

1. Find the general solution of the equation 2 sin\(^{3}\)  x - sin x = 1. Hence find the values between 0° and 360° satisfying the given equation.

Solution:

Since the given equation is a quadratic in sin x, we can solve for sin x either by factorization or by using quadratic formula.

Now, 2 sin\(^{3}\)  x - sin x = 1

⇒ 2 sin\(^{3}\) x - sin x - 1 = 0

⇒ 2 sin\(^{3}\)  x - 2sin x + sin x - 1 = 0

⇒ 2 sin x (sin x - 1) + 1 (sin x - 1) = 0

⇒ (2 sin x + 1)(sin x - 1) = 0

⇒ Either, 2 sin x + 1 = 0 or, sin x - 1 = 0

⇒ sin x = -1/2 or sin x = 1

⇒ sin x = \(\frac{7π}{6}\) or sin x = \(\frac{π}{2}\)

⇒ x = nπ + (-1)\(^{n}\)\(\frac{7π}{6}\) or x = nπ + (-1)\(^{n}\)\(\frac{π}{2}\), where n = 0, ± 1, ± 2, ± 3, …….

⇒ x = nπ + (-1)\(^{n}\)\(\frac{7π}{6}\) ⇒ x = …….., \(\frac{π}{6}\), \(\frac{7π}{6}\), \(\frac{11π}{6}\), \(\frac{19π}{6}\), ……..  or  x = nπ + (-1)\(^{n}\)\(\frac{π}{2}\) ⇒ x = …….., \(\frac{π}{2}\), \(\frac{5π}{2}\), ……..

Therefore the solution of the given equation between 0° and 360° are \(\frac{π}{2}\), \(\frac{7π}{6}\), \(\frac{11π}{6}\) i.e., 90°, 210°, 330°.

 

2. Solve the trigonometric equation sin\(^{3}\) x + cos\(^{3}\) x = 0 where 0° < x < 360°

Solution:

sin\(^{3}\) x + cos\(^{3}\) x = 0

⇒ tan\(^{3}\) x + 1 = 0, dividing both sides by cos x

⇒ tan\(^{3}\) x + 1\(^{3}\) = 0

⇒ (tan x + 1) (tan\(^{2}\) x - tan x + 1) = 0

Therefore, either, tan x + 1 = 0 ………. (i) or, tan\(^{2}\) x - tan θ + 1 = 0 ………. (ii)

From (i) we get,

tan x = -1

⇒ tan x = tan (-\(\frac{π}{4}\))

⇒ x = nπ - \(\frac{π}{4}\)

From (ii) we get,

tan\(^{2}\) x - tan θ + 1 = 0

⇒ tan x = \(\frac{1 \pm \sqrt{1 - 4\cdot 1\cdot 1}}{2\cdot 1}\)

⇒ tan x = \(\frac{1 \pm \sqrt{- 3}}{2}\)

Clearly, the value of tan x, are imaginary; hence, there is no real solution of x

Therefore, the required general solution of the given equation is:

x = nπ - \(\frac{π}{4}\) …………. (iii) where, n = 0, ±1, ±2, …………………. 

Now, putting n = 0 in (iii) we get, x = - 45°

Now, putting n = 1 in (iii) we get, x = π - \(\frac{π}{4}\) = 135°

Now, putting n = 2 in (iii) we get, x = π - \(\frac{π}{4}\) = 135°

Therefore, the solutions of the equation sin\(^{3}\)  x + cos\(^{3}\)  x = 0 in 0° < θ < 360° are x = 135°, 315°.


3. Solve the equation tan\(^{2}\) x = 1/3 where, -  π ≤ x ≤ π.

 Solution: 

tan 2x= \(\frac{1}{3}\)

⇒ tan x= ± \(\frac{1}{√3}\)

⇒ tan x = tan (±\(\frac{π}{6}\)) 

Therefore, x= nπ  ±  \(\frac{π}{6}\),  where  n = 0, ±1, ±2,………… 

When, n = 0 then x = ± \(\frac{π}{6}\) = \(\frac{π}{6}\) or,- \(\frac{π}{6}\)

If n = 1 then x = π ± \(\frac{π}{6}\) + \(\frac{5π}{6}\) or,- \(\frac{7π}{6}\)

If n = -1 then x = - π ± \(\frac{π}{6}\) =- \(\frac{7π}{6}\), - \(\frac{5π}{6}\)

Therefore, the required solutions in – π ≤ x ≤ π are x = \(\frac{π}{6}\), \(\frac{5π}{6}\), - \(\frac{π}{6}\), - \(\frac{5π}{6}\).

 Trigonometric Equations






11 and 12 Grade Math

From General solution of Trigonometric Equation to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Rupees and Paise | Paise Coins | Rupee Coins | Rupee Notes

    Dec 04, 23 02:14 PM

    Different types of Indian Coins
    Money consists of rupees and paise; we require money to purchase things. 100 paise make one rupee. List of paise and rupees in the shape of coins and notes:

    Read More

  2. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Dec 04, 23 01:50 PM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Dec 04, 23 01:49 PM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More